

Water Resources Data Minnesota Water Year 1982

Volume 1. Great Lakes and Souris-Red-Rainy River Basins

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-82-1
Prepared in cooperation with the Minnesota Department of
Natural Resources, Division of Waters; the Minnesota
Department of Transportation; and with other State,
municipal, and Federal agencies

CALENDAR FOR WATER YEAR 1982

									19	81										
	(OCT	OBE	R		-		1	NOV	ЕМВ	ER					DEC	ЕМВ	ER		
S	M	T	W	Т	F	S	S	M	T	W	T	F	S	s	M	Т	W	T	F	S
				1	2	3	1	2	3	4	5	6	7			1	2	3	4	5
4	5	6	7			10							14	6	7	8		10		
	-	-				17	15									15				
						24							28			22				
	26						29					-	20			29				
		-							19	82										
		JANI	UAR	Y				1	FEBI	RUA	RY					MAI	RCH			
S	M	Т	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
					1	2		1	2	3	4	5	6		1	2	3	4	5	6
3	4	5	6	7		9	7						13			9				
10	11					16							20			16				
						23							27			23				
	25						28								29	30	31			
31																				
		Al	PRI	L					1	YAY						J	UNE			
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
				1	2	3							1			1	2	3	4	5
4	5	6	7		9		2	3	4	5	6	7	8	6	7	8				
	12	-							11							15				
														20						
25	26	27	28	29	30		23	24	25	26	27	28	29	27	28	29	30			
							30	31												
		JI	ULY						AUG	GUS'	r				S	EPT	EMBI	ER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
				1	2	3	1	2	3	4	5	6	7				1	2	3	4
4	5	6	7	8	9	10	8	9	10	11	12	13	14	5	6	7	8	9	10	11
11	12	13	14	15	16	17	15	16	17	18	19	20	21	12	13	14	15	16	17	18
														19						
25	26	27	28	29	30	31	29	30	31							28				

Water Resources Data Minnesota Water Year 1982

Volume 1. Great Lakes and Souris-Red-Rainy River Basins

by Kurt T. Gunard, Joseph H. Hess, James L. Zirbel, and Charles E. Cornelius

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-82-1 Prepared in cooperation with the Minnesota Department of Natural Resources, Division of Waters; the Minnesota Department of Transportation; and with other State, municipal, and Federal agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief, Water Resources Division U.S. Geological Survey 702 Post Office Building St. Paul, Minnesota 55101

PREFACE

This volume of the annual hydrologic data report of Minnesota is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface— and ground—water data—collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground—water levels, and water quality provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Minnesota are contained in 2 volumes:

Volume 1. Great Lakes and Souris-Red-Rainy River Basins Volume 2. Upper Mississippi and Missouri River Basins

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the preparation of this report:

Donald W. Ericson, Subdistrict Chief, Grand Rapids, Minnesota Mark R. Have, Water-Quality Specialist, Minnesota District Henry W. Anderson, Jr., Ground-Water Project Chief, Minnesota District

Most of the data were collected, processed, and tabulated by the following individuals:

David J. Bauer
William D. Bemis
Ruth E. Bergstrom
Howard D. Braden
Alex Brietkrietz
Robin G. Brown
John L. Callahan
Linda M. Christenson
Paul E. Felsheim
Patrick J. Finnegan
William A. Gothard

Jeffrey L. Henry
Jerry K. Hicks
James E. Jacques
Roderick L. Johnson
Gregory R. Melhus
Gregory B. Mitton
Luanne Nelson
Charles J. Smith
Gregory W. Stratton
Lan H. Tornes
Duane A. Wicklund
Tillie L. Yocus

Jo Anne A. Jannis typed the text of the report.

This report was prepared in cooperation with the State of Minnesota and with other agencies under the general supervision of Donald R. Albin, District Chief, Minnesota.

50272 - 101 REPORT DOCUMENTATION 1. REPORT NO. 3. Recipient's Accession No. **PAGE** USGS/WRD/HD-84/003 4. Title and Subtitle 5. Report Date Water Resources for Minnesota, Water year 1982 October 1983 Volume 1. Great Lakes and Souris-Red-Rainy River Basins 7. Author(s) 8. Performing Organization Rept. No. Kurt T. Gunard, Joseph H. Hess, James L. Zirbel, and Charles E. Cornelius 9. Parforming Organization Nama and Address 10. Project/Task/Work Unit No. USGS-WRD-MN-82-1 11. Contract(C) or Grant(G) No. U.S. Geological Survey, Water Resources Division 702 Post Office Building St. Paul, Minnesota 55101 12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered Annual Oct. 1, 1981 to Sept. 30, 1982 U.S. Geological Survey, Water Resources Division 702 Post Office Building St. Paul, Minnesota 55101

15. Supplementary Notes

Prepared in cooperation with the State of Minnesota and with other agencies.

16. Abstract (Limit: 200 words)

Water-resources data for the 1982 water year for Minnesota consist of records of stage, discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This volume contains discharge records for 47 gaging stations; stage-only records for 1 gaging station; stage and contents for 5 lakes and reservoirs; water quality for 15 gaging stations, 2 stage stations, 20 partial-record stations, and 5 wells; and water levels for 47 observation wells. Also included are 43 high-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data, together with the data in Volume 2, represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Minnesota.

17. Document Analysis a. Descriptors

*Minnesota, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water levels, Water analyses, Data collection

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statemen: No restriction on distribution	19. Security Class (This Report)	21. No. of Pages
This report may be purchased from	UNCLASSIFIED	220
National Technical Information Service	20. Security Class (This Page)	22. Price
Chainefield VA 22161	UNCLASSIFIED	

(See ANSI-Z39.18)

CONTENT

Preface
Introduction
Hydrologic conditions
Definition of terms
Downstream order and station number
Special networks and programs
Explanation of stage and water-discharge records
Collection and computation of data
Accuracy of field data and computed results
Other data available
Records of discharge collected by agencies other than the Geological Survey
Explanation of water-quality records
Collection and examination of data
Water analysis
Sediment
Explanation of ground-water level records.
Collection of the data
Publications on techniques of water-resources investigations
Discontinued gaging stations
Gaging-station records
Discharge at partial-record stations and miscellaneous sites
High-flow partial-record stations
Miscellaneous sites
Analyses of samples collected at water-quality partial-record stations
Miscellaneous analyses of streams
Ground-water records
Ground-water level records
Quality of ground-water records
Index

ILLUSTRATIONS

Figure	1.	Graph showing comparison of discharge at three long-term representative gaging stations for the current year with median discharge for water years 1951-80	4
	2.	Graph showing comparison of dissolved-solids concentrations for the current year	
		with mean monthly values for the period of record	6
	3.	Hydrograph showing long-term trends of water level for period of record in	
		well 155N47W11AAA03, Marshall County	7
	4.	Diagram showing system for numbering wells and miscellaneous sites	13
	5.	Map showing location of water-discharge stations	18
		Map showing location of water-quality stations	20
		Map showing location of high-flow partial-record stations	130
		Map showing location of ground-water wells	182

Letter after station name designates type of data: (1) discharge; (e) gage height, elevation, or contents; (c) chemical, radio-chemical, or pesticides; (b) biological or micro-biological; (p) physical (water temperature, sediment, or specific conductance)

	Page
ST. LAWRENCE RIVER BASIN	J
STREAMS TRIBUTARY TO LAKE SUPERIOR	07 177
Pigeon River at Middle Falls, near Grand Portage(d p) Baptism River near Beaver Bay	27,175 28,175
Knife River near Two Harbors(d p)	34,175
St. Louis River: Partridge River above Colby Lake at Hoyt Lakes(d p)	35,175
Partridge River near Aurora(d p) St. Louis River near Aurora(d p)	40,175 41,175
St. Louis River at Forbes(d p)	42,176
St. Louis River at Scanlon	43,176
Deer Creek near Holyoke(d p)	50,176
HUDSON BAY BASIN Lake Winnipeg (head of Nelson River):	
RED RIVER OF THE NORTH BASIN	
Otter Tail River (head of Red River of the North): Orwell Lake near Fergus Falls(- e)	51
Otter Tail River below Orwell Dam, near Fergus Falls(d p)	52,176
Bois de Sioux River near White Rock, SD	53,176 54
Red River of the North at Hickson, ND	56
Red River of the North at Fargo, ND	58 - 60
Buffalo River near Hawley	61,176
South Branch Buffalo River at Sabin	62,176 63,177
Wild Rice River at Twin Valley(d p)	64,177 65,177
Wild Rice River at Hendrum	66
Marsh River near Shelly(d p)	69,177
Sand Hill River at Climax	70,177
Lower Red Lake near Red Lake	71 72 1 7 7
Red Lake River near Red Lake	72,177 73,178
Thief River near Thief River Falls	74,178
Clearwater River at Plummer	75,178 76,178
Clearwater River at Red Lake Falls(d p) Red Lake River at Crookston(d - c b p)	77,178 78,178
Red Lake River at Crookston	83
Snake River: Middle River at Argyle	86,178
Red River of the North at Drayton, ND	87
Red River of the North at Emerson, Manitoba(d - c b p) Roseau River below South Fork near Malung(d p)	89 92,179
Roseau River below Roseau	93,137
Roseau River at Roseau Lake	94 95,179
Roseau River below State ditch 51, near Caribou	96,179
LAKE OF THE WOODS BASIN (head of Winnipeg River) Namakan River (head of Rainy River):	
Basswood River:	
Kawishiwi River near Ely(d - c b p) Filson Creek near Ely(d p)	103,179 105,179
Kawishiwi River near Winton	106,179
Basswood River near Winton	107,179 108,179
Vermilion River:	•
Vermilion Lake near Soudan	109 110,180
Rainy Lake near Fort Frances, Ontario(- e)	111
Rainy River: Little Fork River:	
Sturgeon River near Chisholm(d p)	112,180
Little Fork River at Littlefork	113,180 119,180
Rapid River near Baudette(d p)	125,180
Lake of the Woods at Warroad	126

	Page
BECKER	
Well 138N41W17ADA01	184
Well 138N4 2W26CDA01	184
Well 138N43W18CDA01	185
Well 140N41W26CCD01	185
Well 149N31W25DCD01	186
Well 149N31W25DCD02	186
Well 149N31W25DCD03	186
Well 149N31W25DCD04.	187
Well 156N31W36DAA01	187
Well 156N31W36DAAO2	187 188
CARLTON	100
Well 047N17W07AAB01	188
Well 048N17W02CCC01	189
Well 049N17W17ADD01	189
CLAY Well 137N45W30CDB01	189
Well 139N47W05CDC01	191
Well 139N47W06AAA01.	191
Well 139N48W11ABA01	191
GRANT	•
Well 128N43W21CBB01	192
Well 129N42W09CCC01	192
Well 130N44W25BCB01ITASCA	193
Well 062N23W35BAB01	194
Well 148N25W08DDD01	194
KOOCHICHING	
Well 066N27W24DAA01	195
Well 155N26W21DAA01	195 196
LAKE OF THE WOODS	190
Well 161N34W18Bcco1	197
MAHNOMEN	
Well 144N42W20BBA01	197
MARSHALL Well 155N47W11AAA03	198
Well 156N48W10DA A0 2	198
Well 157N48W27BAA01	199
OTTER TAIL	-,,
Well 134N41W08CCC01	199
Well 134N43W14ADB01	199
Well 136N39W23DCC01	200 200
Well 136N43W10AAA01	201
Well 137N39W22ACD01	201
PENNINGTON	
Well 154N43W33ADA01	201
ST. LOUIS	20.0
Well 057N 20W05DAD01	20 2 20 2
Well 058N18W12CCC01.	203
Well 058N2OW16DBC01	203
Well 060N13W01BBA01	204
Well 063N12W26ABB01	204
TRAVERSE Well 129N47W25CDC01	20.5
Well 129N47W25GDG01	205
Well 130N45W15BCC01	205
Well 136N47W23CCCO1	205

INTRODUCTION

Water resources data for the 1982 water year for Minnesota consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume contains discharge records for 47 gaging stations; stage only records for 1 gaging station; stage and contents for 5 lakes and reservoirs; water quality for 15 gaging stations, 2 stage stations, 20 partial-record stations, and 5 wells; and water levels for 47 observation wells. Also included are 43 high-flow partial-record stations. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous measurements. These data, together with the data in Volume 2, represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Minnesota.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers titled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water supply papers titled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers titled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, VA 22202.

For water years 1961 through 1974, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1974 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1975 water year, water data for streamflow, water quality, and ground water are published as an official Survey report on a State-boundary basis. These official Survey reports carry an identification number consisting of the two letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report MN-82-1." Water-Data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (612) 725-7841.

COOPERATION

The U.S. Geological Survey and organizations of the State of Minnesota have had cooperative agreements for the systematic collection of streamflow records since 1909, for ground-water levels since 1948, and for water-quality records since 1952. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Minnesota Department of Natural Resources, Division of Waters, Larry Seymour, director.

Minnesota Department of Transportation, Richard P. Braun, commissioner.

Minnesota Pollution Control Agency, Sandra Gardebring, executive director.

Metropolitan Waste Control Commission of the Twin Cities Area, George H. Frisch, chairman.

Metropolitan Council of the Twin Cities Area, Gerald J. Isaacs, chairman.

Elm Creek Conservation Commission, Fred G. Moore, chairman.

Red Lake Watershed District, Paul Brekken, president.

Middle River-Snake River Watershed District, Donald Rivard, chairman.

City of Eagan, Bea Blomquist, mayor.

Assistance in the form of funds or services was given by the Corps of Engineers, U.S. Army, in collecting records for 43 gaging stations and 17 water-quality stations published in this report.

Eleven gaging stations in the Hudson Bay and St. Lawrence River basins were maintained by funds appropriated to the United States Department of State. Eight of these, on waters adjacent to the international boundary, are maintained by the United States (or Canada) under agreement with Canada (or the United States), and the records are obtained and compiled in a manner equally acceptable in both countries. These stations are designated herein as "International gaging stations."

Some records for the Red River of the North, which borders the State on the west, were obtained at the request of other Federal agencies as a part of the program of the U.S. Department of the Interior for development of the Missouri River basin.

HYDROLOGIC CONDITIONS

PRECIPITATION AND STREAMFLOW

Normal annual precipitation in Minnesota ranges from 19 inches in the northwest to 32 inches in the southeast. The average annual runoff ranges from less than 2 inches in the west to more than 16 inches in the northeast. The 1982 water year began with rainfall amounts that were considerably above normal throughout the State during October. Total precipitation for the year was above normal over the entire State, except in the east-central part where it was slightly below normal. Annual runoff in 1982 ranged from 0.3 inch in parts of the west to more than 20 inches in the northeast. Runoff statewide averaged 130 percent of normal.

Records from stations in northern Minnesota indicate that runoff was near or above average during 1982. Runoff in the Baptism River near Beaver Bay in northeast Minnesota and in the Little Fork River near Littlefork in north-central Minnesota was above average for the year, 20.23 and 10.26 inches, respectively. Conversely, runoff in the Roseau River at Ross in northwest Minnesota was 2.52 inches, which is slightly below average. Figure 1 shows a comparison of monthly and annual mean discharges for these stations to median discharges for a 30-year base period.

Annual mean streamflow was below average at only a few stations in the northwest, north-central, and northeast areas. Most of the stations recorded average or above-average streamflow. Flow was excessive at a few stations.

No peaks of record were exceeded during 1982 at any gaging stations on streams for which records are published in this volume.

WATER QUALITY

Dissolved-solids data from selected NASQAN stations were used to show variations in water quality in the Great Lakes and Souris-Red-Rainy River basins. With the exception of Roseau River below State Ditch 51 near Caribou, dissolved solids were generally lower than average throughout northern Minnesota (fig. 2). These lower concentrations correspond to the higher-than-normal runoff in this area.

The drinking-water standard of 10 mg/L nitrite plus nitrate nitrogen established by the U.S. Environmental Protection Agency was exceeded twice in ground-water samples from a well in Otter Tail County. The well, completed in outwash, was sampled December 3, 1981, and June 6, 1982; nitrite plus nitrate nitrogen concentrations in each of the samples were 11 and 13 mg/L, respectively. A ground-water sample collected from a shallow well in St. Louis County on August 24, 1982, had a manganese concentration of 300 ug/L. The drinking-water standard for manganese is 50 ug/L.

GROUND-WATER LEVELS

Water levels in surficial aquifers throughout Minnesota remained near average during most of the year. Levels generally rose during the first quarter of the water year but varied from above average in the south-central part of Minnesota to below average throughout the western part. Water levels were stable during winter and rose in response to snowmelt in April and May. Springtime water levels in southern Minnesota continued above average; levels in central and northern Minnesota rose to average or above; levels in the northwest remained below average. Water levels in summer remained near seasonal average throughout the State, rising slightly in July and declining in August and September. Water levels in wells completed in confined aquifers in Minnesota remained near seasonal averages, rising to the highest level in spring and declining to the lowest level in summer.

A hydrograph of water levels in a representative observation well is shown in figure 3 for the period 1956 to 1982.

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting inch-pound units to International System of units (SI) on the inside of the back cover.

 $\frac{\text{Acre-foot}}{\text{and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.}$

Adenosine triphosphate (ATP) is the primary energy donor in cellular life process. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP, therefore, provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at $35^{\circ}\mathrm{C}$. In the laboratory these bacteria are defined as the organisms which produce colonies with a golden-green metallic sheet within 24 hours when incubated at $35^{\circ}\mathrm{C} \pm 1.0^{\circ}\mathrm{C}$ on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours whien incubated at $44.5^{\circ}\text{C} \pm 0.2^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria also found in the intestine of warmblooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at $35^{\circ}\text{C} \pm 1.0^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biochemical oxygen demand (BOD) is a measure of the quantitiy of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²).

 $\underline{\text{Dry mass}}$ refers to the weight of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

 $\frac{\text{Organic mass}}{\text{mass and the ash mass, and represents the actual mass of the living matter.}} \text{ The organic mass is expressed in the same units as for ash mass and dry mass.}$

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed Material.

Cfs-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, or about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

Figure 1.--Comparison of discharges at three long-term representative gaging

EXPLANATION

- Monthly and yearly mean discharges during 1982 water year
- Median of monthly and yearly mean discharges for water years 1951-80

Figure 2.--Comparison of dissolved-solids concentrations for the current year with mean monthly values for the periods of record

Figure 3.--Hydrograph showing long-term changes in water level in well 155N47W11AAA03, Marshall County, for the 1956-82 water years

Chlorophyll refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Cubic foot per second (FT^3/s , ft^3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

 $\underline{\text{Mean discharge}}$ (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

Dissolved refers to the amount of substance present in true chemical solution. In practice, however, the term includes all forms of substance that will pass through a 0.45 micrometer memmbrane filter, and thus may include some very small (colloidal) suspended particles. Analyses are performed on filtered samples.

Diversity index is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where n_z is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram (UG/G, ug/g) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per kilogram (MG/KG, mg/kg) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (kilogram) of sediment.

Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Parameter code numbers are unique five-digit code numbers assigned to each parameter placed into storage. These codes are assigned by the Environmental Protection Agency and are also used to identify data exchanged among agencies.

<u>Partial-record station</u> is a particular site where limited streamflow and(or) water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in distilled water (chemically dispersed).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay Silt Sand Gravel	0.00024 - 0.004 .004062 .062 - 2.0 2.0 - 64.0	Sedimentation. Sedimentation. Sedimentation or sieve. Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and growing upon solid surfaces. While <u>primarily</u> consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.

<u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

Picocurie (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Cl). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

 $\underline{\text{Plankton}}$ is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/(m^2 \cdot time)$ for periphyton and macrophytes and mg $C/(m^3 \cdot time)$ for phytoplankton] are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg $0_2/(m^2 \cdot time)$ for periphyton and macrophytes and mg $0_2/(m^3 \cdot time)$ for phytoplankton] are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

<u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

WATER RESOURCES DATA FOR MINNESOTA, 1982

Suspended-sediment discharge (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

Suspended-sediment load is quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

 $\underline{\text{Mean concentration}}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for appoximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lived.

Natural substrates refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and miltiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest USGS topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent.

<u>Suspended</u>, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following:

Kingdom....Animal
Phylum...Arthropoda
Class...Insects
Order...Ephemeroptera
Family...Ephermeridae
Genus...Hexageria
Species Hexagenia limbata

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

 $\underline{\text{Tons per day}}$ is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total recoverable refers to the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent percent in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharge. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\underline{\text{WDR}}$ is used as an abbreviation for "Water-Data Report" in reference to published reports beginning in 1975.

 $\underline{\mathtt{WRD}}$ is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on

first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 05041000, which appears just to the left of the station name, includes the 2-digit part number "05" plus the 6-digit downstream order number "041000".

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells or other sites within a 1-second grid. See figure 4 below. Each well site is also identified by a local well number which consists of township, range, and section numbers, three letters designating 1/4, 1/4 section location, and a two digit sequential number.

Figure 4.--Example of system for numbering well and miscellaneous sites

SPECIAL NETWORKS AND PROGRAMS

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

<u>Pesticide program</u> is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in streams where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radiosotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Tritium network is a network of stations which has been established to provide base line information on the occurrence of tritium in the Nation's surface waters. In addition to the surfacewater stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

COLLECTION AND COMPUTATION OF DATA

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard text-books, in Water-Supply Paper 888, and in U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by hydrologists and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

At some northern stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the basis of recorded range-in-stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage heights are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location of the gaging station and the drainage area are obtained from most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compliation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed herein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly, or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figure was first published is given. It should be noted that for all stations for which cubic feet per second per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use; the datum of the present gage referred to National Geodetic Vertical Datum; and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITION OF TERMS."

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "REMARKS." For reservoir stations, information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations, peak discharges are listed with "EXTREMES FOR CURRENT YEAR". If they are, all independent peaks above the selected base are published in tabular format with the time of occurrence and corresponding gage heights, including the maximum for the year. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word "NOTE". Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinte stage-discharge relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given.

Data collected at partial-record stations follow the information for continuous record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. Occasionally, a series of discharge measurements are made within a short time

period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

ACCURACY OF FIELD DATA AND COMPUTED RESULTS

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good," within 10 percent; and "fair," within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 $\rm ft^3/s$; to tenths between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures above 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

OTHER DATA AVAILABLE

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

RECORDS OF DISCHARGE COLLECTED BY AGENCIES OTHER THAN THE GEOLOGICAL SURVEY

The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintains an index of all discharge measurement sites in the State. Information on records available at specific sites can be obtained upon request.

EXPLANATION OF WATER-QUALITY RECORDS

COLLECTION AND EXAMINATION OF DATA

Surface-water samples for analyses usually are collected at or near gaging stations. The quality-of-water records are given immediately following the discharge records at these stations.

The descriptive heading for water-quality records gives the period of record for all water-quality data, the period of daily record for parameters that are measured on a daily basis (specific conductance, pH, dissolved oxygen, water temperature, sediment discharge, etc.), extremes for the period of daily record, extremes for the current year, and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, date of sampling and (or) other pertinent data are given in the table containing the chemical analyses of the ground water.

WATER ANALYSIS

Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed on a following page.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

WATER RESOURCES DATA FOR MINNESOTA, 1982

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

WATER TEMPERATURE

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small daily temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published.

SEDIMENT

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

EXPLANATION OF GROUND-WATER LEVEL RECORDS

COLLECTION OF THE DATA

Only ground-water-level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figure 4.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet with reference to either NGVD of 1929 or land-surface datum (1sd). NGVD of 1929 is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum in NGVD of 1929 is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

Hydrographs showing water-level fluctuations are included for 15 representative wells; 1 peat, 6 buried sand, and 8 surficial sand wells.

Figure 5.--Location of water-discharge stations

Figure 6.--Location of water-quality stations

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

Thirty-seven manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office).

- When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- 1-D1.
- Water temperature—influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Rook 3. Chapter A1. 1967. 30 pages. 1-D2.
- 2-D1
- 2-E1.
- 3-A1.
- Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages. 3-A2.
- Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages. 3-A3.
- Weasurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages. 3-A4.
- Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages. 3-A5.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3-A7.
- 3. Chapter A7. 1968. 28 pages.

 Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages. 3-A8.
- Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 3-A9.
- Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages. 3-A11.
- Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, 3-B1. Chapter B1. 1971. 26 pages.
- 3-B2.
- Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.

 Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages. 3-B3.
- Osas--IWRI book 3, Chapter 8. 1960. Tob pages. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter Cl. 1970. 55 pages. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI 3-C1.
- 3-C2. Book 3, Chapter C2. 1970. 59 pages.

 Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI Book 3, Chapter
- 3-C3. C3. 1972. 66 pages.
- Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 4-A1.
- 4-A2 4-R1
- Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.

 Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.

 Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, 4-B2. Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-01. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI
- 5-A1.
- Book 4, Chapter D1. 1970. 17 pages.

 Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS-TWRI Book 5, Chapter A1. 1979. 626 pages.

 Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages. 5-A2.
- 5-A3.
- Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
 Methods for collection and analysis of aquatic biological and microbiological samples, edited 5-A4. Methods for collection and analysis of aquatic biological and microolological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.

 Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.

 Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 5-A5.
- 5-C1.
- Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages. 7-C1.
- 7-C2.
- 7-C3.
- Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.

 A model for simulation of flow in singular and interconnected channels, by R. W. Schaffranek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.

 Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages

 Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWIR ROOM 8, Chapter R2. 1968. 15 pages 8-A1.
- 8-B2. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

DISCONTINUED GAGING STATIONS

The following continuous-record streamflow or stage stations in Minnesota have been discontinued or converted to partial-record stations. Daily streamflow or stage records were collected and published for the period of record shown for each station.

Station number	Station name	Drainage area (mi ²)	Period of record
	Streams tributary to Lake Superior		
04010000	Pigeon River above mouth of Arrow River, MN	256	1924-27
04011000	Brule River at mouth near Hoveland, MN	248	1911†
04011500	Devil Track River at mouth near Grand Marais, MN	a77	1911+
04012000	Cascade River at mouth near Grand Marais, MN	111	1911†
*04012500	Poplar River at Lutsen, MN	114	1911+, 1912-17, 1928-47, 1952-61
04013000	Cross River at Schroeder, MN	a91	1931-32
04015000	Beaver Creek (Beaver Bay Run) at Beaver Bay, MN	126	1911-14, 1928-31
04015455	South Branch Partridge River near Babbitt, MN	18.5	1977-80
04015500	Second Creek near Aurora, MN	29	1955-80
04017000	Embarrass River at Embarrass, MN	93.8	1942-64
04018000	Embarrass River near McKinley, MN	171	1953-62
04018900	East Two Rivers near Iron Junction, MN	40.0	1966-79
04019000	West Two Rivers near Iron Junction, MN	65.3	1953-62, 1965-79
04019300	West Swan River near Silica, MN	16.3	1963-79
04019500	East Swan River near Toivola, MN	112	1953-62, 1964-71
04020000	Swan River near Toivola, MN	254	1952-61
04021000	Whiteface River below (at) Meadowlands, MN	453	1909-17
04023000	Cloquet River at Independence, MN	a750	1909-17
04023500	St. Louis River near Cloquet, MN	a3,400	1903†
04024090	Elim Creek near Holyoke, MN	1.06	1976-78
04024093	Skunk Creek below Elim Creek near Holyoke, MN	8.83	1976-78
	Red River of the North basin		
05030000	Otter Tail River near Detroit Lakes, MN	270	1937-71
05030500	Otter Tail River at German Church, near Fergus Falls, MN	a1,230	1904-17
05033900	Pelican River at Detroit Lakes, MN	-	1968-71, 1974-75
05034100	Pelican River at Detroit Lake outlet near Detroit Lakes, MN	-	1968-71, 1972-75
05035100	Long Lake outlet near Detroit Lakes, MN	-	1968–71
05035200	West Branch County Ditch No. 14 near Detroit Lakes, MN	-	1968-71
05035300	East Branch County Ditch No. 14 near Detroit Lakes, MN	-	1968–71
05035500	St. Clair Lake outlet near Detroit Lakes, MN	-	1968–75
05035600	Pelican River at Muskrat Lake outlet near Detroit Lakes, MN	-	1968–75
05037100	Pelican River at Sallie Lake outlet near Detroit Lakes, MN	-	1968-75
05039100	Pelican River at Lake Melissa outlet near Detroit Lakes, MN	-	1968-75
05040000	Pelican River near Detroit Lakes, MN	123	1942-53
05040500	Pelican River near Fergus Falls, MN	482	1909-12, 1942-80
05045500	Otter Tail River (Red River) near Fergus Falls, MN	a1,690	1909-10†

[&]quot;See footnotes at end of table."

Station number	Station name	Drainage area (mi ²)	Period of record
	Red River of the North basinContinued		
05046500	Otter Tail River near Breckenridge, MN	a2,040	1931-32, 1939-46†
05047000	Mustinka River (head of Bois de Sioux River) near Norcross, MN	-	1940-47†
05047500	Mustinka ditch above West Branch Mustinka River (Twelve Mile Creek) near Charlesville, MN	-	1943-55
05048000	Mustinka ditch below West Branch Mustinka River (Twelve Mile Creek) near Charlesville, MN	-	1943-55
05048500	West Branch Mustinka River (Twelve Mile Creek) below Mustinka ditch near Charlesville, MN	-	1943-55
05049000	Mustinka River above (near) Wheaton, MN	834	1915-24, 1930-58
05050500	Bois de Sioux River below Fairmont, ND	al,540	1919-44
05051000	Rabbit River at Cambell, MN	266	1942-52
05054020	Red River of the North below Fargo, ND	-	1969-78
*05061200	Whiskey Creek at Barnesville, MN	25.3	1964-66
05063000	Wild Rice River near Ada, MN	a1,100	1948-54
*05063500	South Branch Wild River River near Borup, MN	254	1944-49
05067000	Marsh River below Ada, MN	-	1948-52
05068000	Sand Hill River at Beltrami, MN	a324	1943-58
05068500	Sand Hill ditch at Beltrami, MN		1943-58
05075500	Thief River near Gatske, MN	-	1953-56
05076500	Red Lake River at Thief River Falls, MN	a3,450	1909-18, 1920-30
05077000	Clearwater River near Pinewood, MN	132	1940-45
05077500	Clearwater River near Leonard, MN	153	1934-47
*05077700	Ruffy Brook near Gonvick, MN	45.2	1960-78
*05078000	Clearwater River at Plummer, MN	512	1939-79
05083500	Red River of the North at Oslo, MN	331,200	1936-37, 1941-43, 1945-60, 1973-78
05085500	Snake River at Warren, MN	a175	1945, 1953-56
05086000	Snake River at Alvarado, MN	309	1945, 1953-56
05086500	Snake River near Argyle, MN	481	1945
05087000	Middle River near Strandquist, MN	-	1953-56
05090500	Tamarac River near Strandquist, MN	-	1953-56
05091000	Tamarac River at Stephen, MN	-	1945
05091500	Tamarac River near Stephen, MN	a320	1945, 1953-55
05092500	Two Rivers (Middle Fork Two rivers) near Hallock, MN	131	1931-38
05093000	South Branch (South Fork) Two Rivers near Pelan, MN	281	1928-38, 1953-56
*05094000	South Branch Two Rivers at Lake Bronson, MN	444	1928-36, 1937, 1941-43, 1944, 1945-47, 1953-81
05094500	South Branch Two Rivers (Two Rivers) at Hallock, MN	-	1940-47

[&]quot;See footnotes at end of table."

DISCONTINUED GAGING STATIONS

Station number	Station name	Drainage area (mi ²)	Period of record
	Red River of the North basinContinued		
05095000	Two Rivers (South Branch Two Rivers) at Hallock, MN	625	1911-14, 1929-30, 1938-39, 1941-43
05095500	Two Rivers below Hallock, MN	644	1945-55
05096000	North Branch (North Fork) Two Rivers near Lancaster, MN	a32	1929-38, 1941-55
05096500	State Ditch 85 near Lancaster, MN	a95	1929-38, 1942-55
05097000	North Branch Two Rivers at Lancaster, MN	209	1941-42, 1953-56
05097500	North Branch Two Rivers near Northcote, MN	386	1941-42, 1945-51
05098000	Two Rivers below North Branch near Hallock, MN	a1,060	1941-43
05103000	Roseau River (at) near Malung, MN	252	1928-46
05104000	South Fork (West Branch) Roseau River near Malung, MN	312	1911-14, 1928-46
05105000	Roseau River at Roseau, MN	-	1940-47
05105500	Roseau River near Roseau, MN	-	1930-60
05106000	Sprague Creek near Sprague, Manitoba	176	1928-81
05107000	Pine Creek near Pine Creek, MN	74.6	1928-53
05108000	Roseau River near Badger, MN	-	1928-69
05108500	Roseau River near Duxby, MN	-	1929-51, 1952-56
05109000	Badger Creek near Badger, MN	a2.2	1929-30, 1931-38
05109500	Roseau River near Haug, MN	-	1932-66
05110000	Roseau River at outlet of State Ditch 69 near Oak Point, MN	-	1939-42
05110500	Roseau River at head of State Ditch 51 near Oak Point, MN	-	1933-42
05111000	Roseau River at Oak Point, MN	-	1933-39, 1941-60
05112500	Roseau River at International boundary, near Caribou, MN	a1,590	1933-69
	Lake of the Woods basin	0.1.0	1050 (1
05124500	Isabella River near Isabella, MN	341	1953-61, 1976-77
05125000	South Kawishiwi River near Ely, MN	-	1953-61, 1976-78
05125500	Stony River near Isabella, MN	180	1953-64
05125550	Stony River near Babbitt, MN	219	1975-80
05126000	Dunka River near Babbitt, MN	53.4	1951-62, 1975-80
05126210	South Kawishiwi River above White Iron Lake near Ely, MN	-	1975-78
05126500	Bear Island River near Ely, MN	68.5	1953-62, 1975-77
05127205	Burntside River near Ely, MN	-	1967-78
05127207	Bjorkman's Creek near Ely, MN	1.36	1972-78
05127210	Armstrong Creek near Ely, MN	5.29	1967-78
05127215	Longstorff Creek near Ely, MN	8.84	1967-78
05127219	Shagawa Lake tributary at Ely, MN	1.84	1971-78
05127220	Burgo Creek near Ely, MN	3.04	1967-78

[&]quot;See footnotes at end of table."

DISCONTINUED GAGING STATIONS

Station number	Station name	Drainage area (mi ²)	Period of record
	Lake of the Woods basinContinued		
05127230	Shagawa River near Ely, MN	99	1967-78
05128340	Pike River near Biwabik, MN	-	1977-79
05128500	Pike River near Embarrass, MN	115	1953-64, 1976-79
05129000	Vermilion River below Vermilion Lake near Tower, MN	483	1911-17, 1928-81
05129500	Rainy River at International Falls, MN	14,900	1905-60
05130000	Sturgeon River (Lake) at Side Lake, MN	_	1938-47
05131000	Dark River near Chisholm, MN	50.6	1942-61, 1965-79
05131800	Deer Lake outlet (Deer Lake) near Effie, MN	-	1937-39 1940-46
*05132000	Big Fork River at Big Falls, MN	a1,460	1909-10†, 1911-12†, 1928-79
05132500	Big Fork River at Laurel, MN	-	1909
05133000	Black River near Loman, MN	-	1909
05139500	Warroad River near Warroad, MN	162	1946-80
*05140000	Bulldog Run near Warroad, MN	14.2	1946-51, 1966-77
*05140500	East Branch Warroad River near Warroad, MN	. 102	1946-54, 1966-77

^{*} Presently operated as high-flow partial-record station.
† Stage records only.
a Approximately.

HYDROLOGIC-DATA STATION RECORDS

STREAMS TRIBUTARY TO LAKE SUPERIOR

04010500 PIGEON RIVER AT MIDDLE FALLS, NEAR GRAND PORTAGE, MN (International gaging station)

LOCATION.--Lat 48°00'44", long 89°36'58", in SWANEA sec.24, T.64 N., R.6 E., Cook County, Hydrologic Unit 04010101, on the Grand Portage Indian Reservation, on right bank 400 ft (122 m) upstream from Middle Falls, 2.5 mi (4.0 km) upstream from Grand Portage Port of Entry, 3.5 mi (5.6 km) upstream from mouth, and 4.7 mi (7.6 km) northeast of village of Grand Portage.

DRAINAGE AREA.--600 mi^2 (1,554 km^2).

PERIOD OF RECORD.--June to October 1921, April to November 1922, March 1923 to current year. Published as "at International Bridge" April 1924 to September 1940; as "below International Bridge" October 1940 to September 1965. Monthly discharge only for some periods, published in WSP 1307.

REVISED RECORDS.--WSP 744: 1927-28. WSP 804: 1934(M). WSP 974: Drainage area. WSP 1337: 1924(M), 1925, 1926-28(M), 1931(M), 1938(M), 1941(M), 1945-46(M), 1947, 1948(M), 1950(M).

GAGE .-- Water-stage recorder. Datum of gage is 787.58 ft (240.054 m), National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1940, nonrecording gage at International Bridge, 5.8 mi (9.3 km) upstream at datum 102.24 ft (31.163 m) higher. Oct. 1, 1940, to Dec. 31, 1975, at present site at datum 2.00 ft (0.610 m) higher.

REMARKS .-- Records good except those for winter period, which are fair.

COOPERATION .-- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--59 years (water years 1924-82), 503 ft3/s (14.24 m3/s), 11.38 in/yr (289 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,000 ft³/s (312 m³/s) May 5, 1934, gage height, 7.6 ft (2.32 m), site and datum then in use, from rating curve extended above 7,000 ft⁵/s (198 m³/s); minimum daily, 1.0 ft³/s (0.028 m³/s) Jan. 15-21, 1977; minimum recorded gage height, 1.24 ft (0.378 m) Jan. 7, 8, 15, 1977, but may have been less during period of no gage-height record, Jan. 16 to Apr. 17, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,820 ft 3 /s (165 m 3 /s) Apr. 25, gage height, 10,39 ft (3.167 m), no other peak above base of 3,000 ft 3 /s (85.0 m 3 /s); minimum daily discharge, 80 ft 3 /s (2.27 m 3 /s) Dec. 10.

		DISCHARGE	E, IN CUB	IC FEET	PER SECO	ND, WATER MEAN VAL	R YEAR OCT UES	OBER 1981 T	O SEPTE	MBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	177	297	146	100	100	95	185	2330	837	247	268	152
2	206	276	151	100	100	95	205	2210	814	236	259	153
3	211	257	144	100	100	95	235	2070	774	239	246	158
4	235	239	144	100	100	95	250	1980	712	271	235	164
5	294	230	144	100	100	95	255	2110	663	326	227	157
6	366	224	140	100	100	94	250	2100	615	392	228	143
7	397	224	130	100	100	93	250	2020	577	897	293	133
8	355	214	110	100	100	92	245	1800	551	897	350	124
9	299	198	90	100	100	92	245	1590	555	721	339	118
10	264	195	80	100	100	92	240	1770	576	616	317	119
11	251	185	100	100	100	92	240	2100	575	617	284	117
12	235	177	120	100	100	94	250	1990	550	598	254	125
13	221	173	140	100	100	96	280	2130	501	625	229	152
14	240	165	130	100	100	98	420	2430	475	634	221	203
15	299	164	120	100	100	100	600	2190	462	633	212	224
16	300	159	115	100	100	105	750	1960	456	583	204	202
17	288	155	115	100	100	110	950	1810	442	535	197	188
18	329	152	115	100	100	118	1300	2110	410	563	192	189
19	348	152	110	100	100	122	1480	2220	388	538	186	203
20	350	140	110	100	100	126	1420	2010	372	478	179	205
21	321	122	110	100	100	130	1340	1790	369	423	179	200
22	296	99	110	100	100	132	1320	1600	362	392	190	189
23	272	124	110	100	100	134	2000	1450	350	368	192	176
24	256	132	105	100	100	136	3370	1330	335	350	191	175
25	250	139	105	100	95	138	5050	1230	326	329	192	180
26 27 28 29 30 31	235 241 232 241 291 315	137 147 136 146 154	105 105 105 105 100	100 100 100 100 100	95 95 95 	138 140 144 148 154 162	5110 4010 3140 2640 2510	1150 1080 1020 967 925 882	314 293 281 273 261	317 313 338 341 308 287	186 180 171 168 159 153	183 174 165 165 166
TOTAL MEAN MAX MIN CFSM IN•	8615 278 397 177 .46	5312 177 297 99 •30 •33	3614 117 151 80 •20 •22	3100 100 100 100 •17 •19	2780 99.3 100 95 .17	3555 115 162 92 •19 •22	40540 1351 5110 185 2.25 2.51	54354 1753 2430 882 2•92 3•37	14469 482 837 261 .80	14412 465 897 236 •78 •89	6881 222 350 153 •37 •43	5002 167 224 117 •28 •31
CAL YR WTR YR			MEAN 4 MEAN 4		3240 5110	MIN 50 MIN 80	CFSM .80 CFSM .74					

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN

LOCATION.--Lat 47°20'07", long 91°12'06", in SENNER sec.15, T.56 N., R.7 W., Lake County, Hydrologic Unit 04010101, on right bank 400 ft (122 m) upstream from bridge on U.S. Highway 61, 0.3 mi (0.5 km) upstream from mouth, 4 mi (6 km) northeast of Silver Bay, and 7 mi (11 km) northeast of village of Beaver Bay.

DRAINAGE AREA .-- 140 mi² (363 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1927 to current year. Monthly discharge only for some periods, published in WSP 1307. REVISED RECORDS. -- WSP 894: 1939. WSP 1337: 1933-34(M), 1935.

GAGE.--Water-stage recorder. Datum of gage is 613.65 ft (187.041 m) National Geodetic Vertical Datum of 1919 (Corps of Engineers bench mark). Prior to Oct. 5, 1934, nonrecording gage, and Oct. 5, 1934 to Nov. 22, 1978, water-stage recorder at site 370 ft (113 m) downstream and at datum 3.68 ft (1.122 m) lower.

REMARKS. -- Records good except those for winter period, which are fair.

AVERAGE DISCHARGE.--55 years, 168 ft 3 /s (4.758 m 3 /s), 16.30 in/yr (414 mm/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 10,000 ft³/s (283 m³/s) Sept. 24, 1977, gage height, 8.33 ft (2.539 m) site and datum then in use, from highwater mark in well, from rating curve extended above 4,200 ft³/s (119 m³/s) on basis of slope-area measurement of peak flow; maximum gage height, 11.06 ft (3.371 m) Apr. 12, 1965, site and datum then in use, from floodmark (backwater from ice); no flow Jan. 14 to Mar. 2, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,300 ft3/s (36.8 m3/s) and maximum (*):

		Disci (ft ³ /s)	harge		height
Date	Time	(ft ³ /s)	(m ³ /s)	(ft)	(m)
Apr. 25	0200	*3750	106	*11.32	3.450
May 5	1230	1830	51.8	9.68	2.950

Minimum daily discharge, 19 ft 3 /s (0.54 m 3 /s) Feb. 21 to Mar. 12; minimum recorded gage height, 5.73 ft (1.747 m) Mar. 12, but may have been less during period of no gage-height record Jan. 17 to Mar. 9.

		DISCHARG	E, IN CU	BIC FEET F	PER SECOND	, WATER EAN VALUE	YEAR OCTO	BER 1981	TO SEPTEM	BER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	387 400 285 281 294	125 114 105 100 95	50 50 49 46 48	29 29 28 28 27	20 20 20 20 20	19 19 19 19	200 250 280 300 250	631 564 507 808 1750	198 171 146 128 112	29 27 53 99 106	63 57 53 50 47	51 72 70 62 50
6 7 8 9 10	278 242 189 152 154	89 84 80 71 67	48 48 47 46 45	27 26 26 25 24	20 20 20 20 20	19 19 19 19	200 170 150 130 120	1390 973 702 551 718	98 91 86 84 167	138 610 606 466 657	46 201 456 392 263	43 37 34 32 49
11 12 13 14 15	168 151 159 433 399	65 63 62 62 63	45 44 44 43 42	24 23 23 22 22	20 20 20 20 20	19 19 23 24 23	110 130 150 200 270	900 799 1040 1060 854	152 153 129 107 99	634 713 851 974 690	172 122 96 85 71	109 209 515 413 316
16 17 18 19 20	304 340 441 357 306	63 62 60 58 48	41 40 39 39 38	22 22 22 21 21	20 20 20 20 20	23 23 23 23 23	450 800 896 749 710	870 855 1250 1090 804	85 77 68 62 59	488 551 472 312 220	61 50 44 48 44	294 266 259 206 183
21 22 23 24 25	270 219 178 151 140	52 56 56 54 51	37 36 36 35 34	21 21 21 21 21	19 19 19 19	23 24 26 27 27	679 858 1460 2450 3360	610 476 379 318 269	59 57 51 46 43	187 181 142 117 118	39 106 125 116 101	153 132 112 102 90
26 27 28 29 30 31	121 119 119 127 136 135	51 51 51 51 51	34 33 32 32 31 30	21 21 21 21 20 20	19 19 19 	27 27 27 27 50 100	2440 1500 1060 856 734	232 196 168 151 186 212	38 34 31 36 33	104 85 69 63 68 68	80 67 57 50 49 47	82 74 70 70 72
TOTAL MEAN MAX MIN CFSM IN.	7435 240 441 119 1•71 1•98	2060 68.7 125 48 .49	1262 40.7 50 30 .29	720 23.2 29 20 .17	552 19.7 20 19 .14 .15	798 25.7 100 19 .18	21912 730 3360 110 5.21 5.82	21313 688 1750 151 4.91 5.66	2700 90.0 198 31 .64 .72	9898 319 974 27 2.28 2.63	3258 105 456 39 •75 •87	4227 141 515 32 1.01 1.12
CAL YR	1981 TOTAL	64643.7	MEAN	177 MAX	1370 1	ITN Q 7	CESM 1	.26 TN	17.18			

CAL YR 1981 TOTAL 64643.7 MEAN 177 MAX 1370 MIN 9.7 CFSM 1.26 IN 17.18 WTR YR 1982 TOTAL 76135.0 MEAN 209 MAX 3360 MIN 19 CFSM 1.49 IN 20.23

NOTE. -- No gage-height record Jan. 17 to Mar. 9.

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1968 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1980 to September 1982 (discontinued).
WATER TEMPERATURES: October 1980 to September 1982 (discontinued).

INSTRUMENTATION. -- Water-quality minimonitor since October 1980.

REMARKS .-- Letter K indicates non-ideal colony count.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 167 micromhos Feb. 18, 1981; minimum, 32 micromhos Apr. 25, 1982.
WATER TEMPERATURES: Maximum, 26.5°C July 7, 1981; minimum, 0.0°C several days during winter period.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 131 micromhos Mar. 31; minimum, 32 micromhos Apr. 25, 26.
WATER TEMPERATURES: Maximum, 23.5°C July 6; minimum, 0.0°C several days during winter period.

			W F	TEK A	UALITY DA	TA, WATER	C YEAR O	OCTOBE	K 1901	TO SEPTE	MBER 190	2		
DA	TE	TIME	FI INS TAN (C	REAM- LOW, STAN- HEOUS FS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNIT:	s) (u	PH LAB NITS) 0403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	TUR-BID- ITY (NTU)	
OCT		- 1-1				- 0								
JAN		1445		266	54	58	7	. 4	7.1	3.0	3.0	753		0
14 Mar	• • •	1515		22	125	104	•		7.7	-10.0	.0	737	1.3	
		1040		19	120	110	7	.6	7.6	-5.0	.0	736	1.3	
		0945		594	55	50	7	. 4	7.0	1.0	.0	749	1.4	
22		1000		57	80	79	7	.6	7.7	12.0	14.0	743	1.1	
AUG 10		1130		262	55	55	7	.6	7.2	11.0	13.0	744	1.3	
DA	TE	OXYGEN DIS- SOLVE (MG/L (00300	SC SC I, (F C ED SA	GEN, DIS- DLVED PER- CENT ATUR- PION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD NESS (MG/ AS CACO	NO NO BO L (ARD- ESS NCAR- NATE MG/L AS CO3) 5902)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SORP- TION RATIO	
OCT														
21 JAN	•••	13.	5	101	K10	52		30	8.0	7.9	2.6	3.1	•	3
14 Mar	• • •	13.	9	98	K5	К8		46	9.0	12	3.9	3.1		. 2
10 APR	• • •	13.	4	95	К4	56		51	7.0	13	4.4	4.2	·	3
		14.	2	99	8	60		24	9.0	6.0	2.1	2.1		2
		9.	0	90	K13	35		37	6.0	9.6	3.1	3.1		3
	•••	9.	6	93	45	210		31	9.0	8.4	2.5	1.7	, .	.1
	DA	S (TE A	POTAS- SIUM, DIS- SOLVED MG/L AS K)	ALK LINI LA (MG AS CAC	TY SULF B DIS /L SOL (MG 03) AS S	3- DIS VED SOI 4/L (MG	DE, S- LVED H/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)) (MG AS SIO	VED DEG VL DI SOI (MG	DUE SUM 80 CON 6. C TUE IS- D EVED SO EVED (M	STI- I NTS, SC IS- (T LVED F G/L) I	JIDS, DIS- DLVED CONS PER DAY) D302)	
	OCT					_					_			
	JAN		.2	22		8.3	2.5	. 2		.0	83		59.6	
	14 MAR	• • •	•3	37		7.1	3.2	• 2		.4	79	67	4.7	
	10 APR	• • •	•3	44		8.5	3.6	•3	. 1	.4	90	75	4.6	
	21 JUN	•••	.6	15		6.0	1.9	.1		9.4	70	37 1	12	
		• • •	- 4	31		5.0	2.1	• 2	!	7.6	53	50	8.2	
		• • •	<.1	22		5.0	1.9	• 2	!	9.5	100	43	70.7	•

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DA:	NO S (1	ITRO- GEN, 2+NO3 DIS- OLVED MG/L S N) 0631)	NITR GEN AMMON DIS SOLV (MG/ AS N	GEN, IA MONI ORGA ED TOT L (MO) AS	A + NIC AL A/L N)	PHOS PHORU TOTA (MG/ AS I	JS, AL /L P)	PHOS PHORU DIS SOLV (MG) AS 1	JS, S- /ED /L P)	PHOR PHOR ORT DIS SOLV (MG/AS P (006	US, HO, ED L	SEDI MENT SUS- PENI (MG,	r, - DED /L)	SED: MEN' DI: CHARC SU: PEN! (T/D: (801)	T, S- GE, S- DED AY)	SIE	SP. VE AM. NER AN MM
	• • •	•29	•0	40	.22	<.0	10	<.0	010	<.	010		14	10			93
	• • •	•35	•0	70	•39	<.0	010	<.0	10	<.	010		11		.68		98
10	• • •	.47	.1	20	.60	<.0	10	<.0	10	<.	010		11		•57		100
	• • •	.63	.1	30	.42	.0	30	•0	010	<.	010		16	26			81
	•••	<.10	<.0	10	.30	<.0	10	<.0	10	<.	010		8	1	• 3		93
AUG 10	• • •	<.10	•0	80	.70	•0	20	<.0	10	<.	010		3	2	•3		82
DATE	TIME	TO (U AS	ENIC TAL G/L AS)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	TO' RE ER (U	IUM, TAL COV- ABLE G/L BA) 007)	AS	S -	TO RE ER (U AS	MIUM TAL COV- ABLE G/L CD) 027)	D: SOI (U) AS	MIUM IS- LVED J/L CD) D25)	MI TO RE ER (U	RO- UM, TAL COV- ABLE G/L CR) 034)	(UC	JM, S- LVED G/L CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO) (01037)
OCT 21	1445		1	0		100		43		<1		<1	1	20		10	<1
JAN 14	1515		2	1		100		11		1		<1		20		10	1
APR 21	0945		1	1		<100		9		1		<1		20		10	<1
AUG 10	1130		1	1		100		11		<1		2		30		20	<1
DATE	COBALT DIS- SOLVED (UG/L AS CO (01035	, TO RE ER (U) AS	PER, TAL COV- ABLE G/L CU) 042)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	TO' RE ER (U AS	ON, TAL COV- ABLE G/L FE) 045)	SOI (UC AS	ON, IS- LVED 3/L FE) 046)	TO RE ER (U AS	AD, TAL COV- ABLE G/L PB) 051)	SO1 (U) AS	AD, IS- LVED G/L PB) O49)	NE TO RE ER (U	NGA- SE, TAL COV- ABLE G/L MN) 055)	NES DI SOI (UC	S- LVED 3/L MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)
OCT 21	<	1	9	6		420		330		5		<1		20		5	-4
JAN 14	<	1	8	4		240		190		4		<1		<10		3	<.1
APR 21	<	1	14	6		500		190		5		3	1	30		11	
AUG 10	<	1	7	1		760		490		5		3		20		6	.1
JAN 14. APR 21. AUG	SE S	RCURY DIS- OLVED UUG/L S HG) 1890)		L NICK V- DIS LE SOI L (UG I) AS 7) (010	S- VED VL NI)	SELE NIUM TOTA (UG/ AS S (0111	i, AL 'L SE)	SELI NIUI DIS SOLV (UG, AS S	M, S- /ED /L SE)	SILV TOT REC ERA (UG AS (010	AL OV- BLE /L AG)	SILVI DIS SOLV (UG, AS /	S- VED VL AG)	ZING TOT: RECC ERAI (UG, AS:	AL OV- BLE /L ZN) 92) 50 60 20	ZIN DI SOL (UG AS (O10	S= VED /L ZN) 90) 40 13
10	• • •	<.1		7	1		<1		<1		<1		<1		40		10

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN---Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	CR .		DECEME	BER		JANUA	RY
1 2 3 4 5	86 72 66 69 68	72 66 64 63 65	81 69 65 67 66	64 65 69 70 71	63 63 64 69 68	63 64 68 70 70	88 88 82 85 85	81	86 85 82 80 84	98 99 97 96 97	96 97 96 96 95	97 98 97 96 96
6 7 8 9 10	66 64 64 65 68	64 63 63 64	65 64 63 64 66	69 70 71 74 75	68 68 70 70 72	68 69 70 72 73	85 85 92 88 92	71 82	84 84 80 84 89	96 95 95 95 96	95 94 94 94	95 95 95 95
11 12 13 14 15	68 67 68 70 62	65 65 62 60	66 66 66 61	75 76 78 77 76	71 72 76 76 75	74 73 77 76 76	93 89 87 88 90	86 86	91 88 87 87 89	98 99 101 101 101	96 97 99 100 99	97 98 100 100
16 17 18 19 20	61 69 65 59 58	59 60 58 57 57	60 64 61 58 58	77 75 76 77 80	74 74 75 75 72	76 75 75 76 78	93 95 97 100 101	95 9 7	91 94 96 99 100	99 100 101 102 102	98 98 100 101 101	99 99 101 102 102
21 22 23 24 25	57 58 59 60 61	56 56 57 57 58	57 57 58 59 60	76 89 91 87 83	66 67 85 83 81	71 76 88 85 82	101 101 104 107 112	100 100 103	100 100 102 105 107	103 103 103 101 102	102 102 101 100 100	102 102 102 101 101
26 27 28 29 30 31	65 64 66 66 64	61 64 65 63 62	63 65 66 64 63	87 84 83 85 86	81 82 80 81 83	84 83 82 83 84	101 101 99 98 98	99	100 100 98 98 98 98	101 102 102 100 100	100 99 99	101 101 101 100 99 99
MONTH	86	56	64	91	63	75	112	71	92	103	94	99
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR		MAX	MIN MARCH		MAX	MIN APRI		MAX	MIN MAY	
DAY 1 2 3 4 5	MAX 100 101 100 100 101			MAX 110 109 108 109			MAX 121 112 112 106 104	APRI 111 107 105 103		MAX 41 42 43 49 48	MAY 39	
1 2 3 4	100 101 100 100	FEBRUAR 99 99 99 98	99 100 99 99	110 109 108 109	MARCH 108 107 107 107	109 108 107 108	121 112 112 106	APRI 111 107 105 103 97 94 93 93	116 109 109 104	41 42 43 49	MAY 39 40 42 42 40	40
1 2 3 4 5 6 7 8 9	100 101 100 100 101 101 102 103 108	99 99 99 98 99 101 102 102	99 100 99 99 100 100 102 102 103	110 109 108 109 109 109 109	MARCH 108 107 107 107 108 108 107	109 108 107 108 109 108 108 108	121 112 112 106 104 97 95 95	APRI 111 107 105 103 97 94 93 93	116 109 109 104 100	41 42 43 49 48 41 42 43	MAY 39 40 42 40 40 40 41 41	40 41 42 47 43 40 41 42 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14	100 101 100 100 101 101 102 103 108 119 106 106 107	99 99 99 98 99 101 102 105 105 104 105 106	99 100 99 100 100 102 102 103 111 105 105 106	110 109 108 109 109 109 109 109 110 117 122 120	MARCH 108 107 107 107 108 108 107 108 108 108 109 109 115	109 108 107 108 109 108 108 108 108 109 111 117 113	121 112 104 104 97 95 96 97 96 97 98	APRI 111 107 105 103 97 94 93 93 93 94 92 92 84 72	116 109 109 104 100 96 94 95 96 94 93 89	41 42 43 48 41 43 45 45 45 45 45 44 48 48	MAY 39 40 42 42 40 40 41 42 44 43 42 43 43	40 41 427 43 40 41 43 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	100 101 100 100 101 101 102 103 108 119 106 106 107 107 107	99 99 99 98 99 101 102 105 105 105 106 106 106	99 100 99 100 100 102 102 103 111 105 106 106 107 107 108	110 109 109 109 109 109 109 109 110 117 122 120 119	MARCH 108 107 107 108 108 108 108 108 108 111 111 111 111	109 108 107 108 109 108 108 108 108 109 111 117 113 115	121 112 110 104 97 95 96 97 96 97 96 97 95 95 95 95 95	APRI 111 107 105 103 97 94 93 93 93 94 92 84 78 72 57 49 50 50	116 109 109 104 100 96 94 95 96 94 93 89 82 76	41243948 41243948 4124356 412448 417 4188 41944	MAY 39 40 42 40 40 41 42 44 43 43 43 46 46 44	41273 412273 41235 445 445
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	100 101 100 101 101 102 103 108 119 106 106 107 107 107 107 107 109 111	99 99 99 99 101 102 105 105 106 106 106 106 107 108 108 109 110	99 100 99 100 100 102 102 103 111 105 106 106 107 107 108 109 109 112 111	110 109 109 109 109 109 109 109 110 117 122 120 119 116 117 114 120 121 124 129	MARCH 108 107 107 108 108 108 108 108 109 115 111 111 111 111 111 111 111 111 11	109 108 107 108 109 108 108 108 109 109 111 117 113 115 115 115 112 115 112 116 119 124	121 112 1106 104 97 95 96 97 96 97 73 85 79 73 85 79 73 81 72	APRI 111 107 105 103 97 94 93 93 93 94 92 92 92 84 78 72 57 49 49 50 50	116 109 109 109 100 96 97 97 98 98 98 98 98 98 98 98 98 98 98 98 98	112398 412398 412356 548847 4488 4447 44844 4455 7912	MAY 39042240 40041244 423333 4664444 4456850	011273 01235 43545 77645 4444 4444 4444

DAY

MAX MIN

STREAMS TRIBUTARY TO LAKE SUPERIOR

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN

		JUNE			JULY			AUGUST			SEPTEMB	ER
1 2 3 4 5	58 58 59 61 63	57 57 57 59 61	58 57 58 60 62	91 90 95 87 78	87 88 86 76 76	89 89 89 80 77	76 78 80 81 83	75 76 77 80 81	75 77 79 81 82	87 92 86 82 82	85 86 81 80 81	86 89 83 81 82
6 7 8 9 10	65 67 68 71 72	62 65 67 66 64	63 66 67 68 68	77 75 49 53 53	72 49 47 47 47	75 61 48 50 49	85 86 63 54 53	83 63 54 53 52	84 77 58 53 53	84 85 88 90 98	81 83 84 87 88	83 84 86 89 91
11 12 13 14 15	64 65 63 64 66	61 62 61 62 64	63 63 62 63 65	49 53 49 43 44	45 49 44 40	46 50 47 41 43	56 59 62 65 68	53 56 59 62 65	55 57 60 63 66	94 89 79 62 62	82 80 62 60 59	86 84 69 61 60
16 17 18 19 20	73 73 70 72 73	65 67 68 70 71	67 69 69 71 73	49 56 51 53 57	45 48 50 51 53	47 52 51 52 55	71 73 75 79 78	68 71 73 75 77	70 72 74 78 78	60 62 61 61 62	59 59 59 59 60	59 61 60 61
21 22 23 24 25	75 76 78 80 81	73 73 76 77 79	74 75 77 79 80	60 59 61 65 66	55 58 58 61 64	58 58 59 62 65	80 86 77 76 76	77 78 74 71 74	79 82 75 73 75	62 64 65 66 67	60 61 62 64 65	61 62 64 65 66
26 27 28 29 30 31	83 85 87 89 89	80 82 84 84 87	82 84 85 87 88	67 69 72 75 76 75	66 67 69 71 75 74	66 68 70 73 75 75	75 77 77 82 82 83	74 74 75 76 81 80	74 75 76 79 82 81	69 71 73 75 75 	66 68 70 72 73	67 69 71 74 74
MONTH YEAR	89 131	57 32	70 79	95	40	62	86	52	72	98	59	73
		п	TEM DED ATHRE	מ) משתחאות ל		MAMED VEA	R OCTOBER 1	091 TO 9	T DITCMOTO	1090		
		1	PHLPUATOU	water (D	EG. (),	MAIEU 1EH	N OOLODEN 1	901 10 8	ELIENDEN	1902		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX		MEAN	-	•	MEAN			MEAN		MIN JANUAR	
DAY 1 2 3 4 5	MAX 6.0 6.0 7.0 7.0 7.5	MIN	MEAN	-	MIN	MEAN		MIN	MEAN			
1 2 3 4	6.0 6.0 7.0 7.0	MIN OCTOBE: 4.5 3.5 3.5 6.5	MEAN R 5.5 4.5 5.0 6.5	MAX 5.5 4.5 4.5 5.5	MIN NOVEMBE. 3.0 3.0 1.5 3.5	MEAN R 4.5 4.0 3.0 4.5	.0 .0 .0	MIN DECEMBER .0 .0 .0 .0	MEAN .0 .0 .0 .0	.0 .0 .0	JANUAR .0 .0 .0 .0	.0 .0 .0
1 2 3 4 5 6 7 8 9	6.0 6.0 7.0 7.0 7.5 8.5 8.5 7.5	MIN OCTOBE: 4.5 3.5 3.5 6.5 6.0 7.0 5.0 6.0	MEAN R 5.5 5.0 6.5 7.0 7.5 6.5 7.0	MAX 5.5 4.5 5.6 4.5 5.0 4.5 1.0	MIN NOVEMBE. 3.0 3.0 1.5 3.5 4.5 2.5 1.0 1.0	MEAN R 4.5 4.0 3.0 4.5 5.5 3.5 2.5 2.5	MAX .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBEI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN	.0 .0 .0 .0 .0 .0	JANUAR .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	6.0 6.0 7.0 7.5 8.5 8.5 7.5 8.0 9.5 9.5	MIN OCTOBE: 4.5 3.5 3.5 6.5 6.0 7.0 5.0 6.0 7.0 7.5 8.5 8.5	MEAN R 5.55050 7.55507 7.55509 7.55500	MAX 5.5 4.5 4.5 5.6 4.5 5.0 4.5 1.0 2.5 3.5	MIN NOVEMBE. 3.0 3.0 1.5 3.5 4.5 2.5 1.0 1.0 0 0 0 1.0 2.0	MEAN R 4.5 4.0 3.0 4.5 5.5 2.5 2.5 1.0 1.5 2.5	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBEI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0	JANUAR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Y .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	6.00 7.00 7.55 8.05 7.55 8.05 9.05 9.05 9.05 9.05 9.05 9.05 9.05	MIN OCTOBE: 4.5 3.55 6.0 7.0 7.0 7.5 8.5 7.5 6.5 8.5 7.5	MEAN 5.50.50 7.55.50 7.55.50 7.55.50 8.50.50 8.50.50 8.50.50	MAX 5.5 5.5 6.0 4.5 5.0 4.0 2.5 5.0 2.5 5.0 3.5 5.0 3.5 5.0 3.5 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	MIN NOVEMBE. 3.0 3.0 1.5 3.5 4.5 2.5 1.0 0.0 0.0 1.0 2.0 3.0 4.0 3.0 1.5 .0	MEAN R 4.5 4.0 3.0 5.5 5.5 5.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBEI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Y .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	66.00 77.00 8.05 8.05 8.05 8.05 99.05 99.05 99.05 42.50	MIN OCTOBE: 4.5 3.55 6.0 7.0 5.00 7.0 7.5 8.5 7.5 6.5 8.5 7.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	MEAN 5.5050 7.66.50 7.66.50 7.55500 8.6050 8.6050 8.6050 1.5000	MAX 5.55 6.0 4.55 6.0 4.50 1.5 1.00 2.55 3.55 6.0 3.00 1.5 0.00 0.00 0.00	MIN NOVEMBE. 3.0 3.0 1.5 3.5 4.5 2.5 1.0 0.0 0.0 1.0 2.0 3.0 4.0 3.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MEAN R 4.50 3.05 5.55 5.55 5.55 6.05 1.05 5.55 4.55 6.00 6.00 6.00	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBEI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAR .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Y .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	XAM	MIN	MEAN
		FEBRUAR	Y		MARCH			APRII	,		MAY	
1 2 3 4 5	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	9.5 10.0 10.0 11.0 10.5	4.0 6.5 6.5 8.0 9.0	6.5 8.0 8.5 9.5 10.0
6 7 8 9 10	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	9.0 8.0 10.0 8.0 9.5	7.5 6.0 5.5 7.0 6.5	8.5 7.5 8.0 7.5 8.0
11 12 13 14 15	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0 .0	.0 .0 .0	.0 .0 .0	11.0 10.0 8.5 13.0 15.5	8.5 9.0 8.0 8.0	9.5 9.5 8.0 10.5 13.5
16 17 18 19 20	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .5 1.5 2.0	.0 .0 .0	.0 .0 .5	13.5 10.5 12.5 14.0 13.5	10.5 10.0 9.5 11.5 10.5	11.5 10.0 11.0 12.5 11.5
21 22 23 24 25	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	2.5 3.5 3.5 3.5 4.5	.0 .0 .0 .0	1.0 1.0 1.5 2.0 2.5	13.5 14.0 15.5 16.0 18.5	9.5 9.0 9.5 10.5 12.0	11.0 11.5 12.5 13.5 15.5
26 27 28 29 30 31	.0	.0	.0	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0	4.5 5.5 7.5 8.5 6.5	1.5 2.0 2.5 4.0 4.5	3.0 4.0 5.0 6.0 5.5	19.0 19.0 19.5 18.0 20.0 17.5	14.0 14.5 14.0 15.5 14.5 13.5	16.5 16.5 17.0 16.5 17.5 14.5
MONTH	•0	•0	•0	•0	.0	•0	8.5	•0	1.0	20.0	4.0	11.5
DAY	MAX	MIN JUNE	MEAN	MAX	MIN	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEM	MEAN BER
DAY 1 2 3 4 5	MAX 14.0 15.0 16.0 17.5 17.5		MEAN 12.5 12.5 13.0 14.0 15.0	20.5 18.5 16.5 16.0 21.5		MEAN 18.0 17.0 15.5 14.5 18.0	21.0 14.5 17.5 18.0 19.5			MAX 16.0 16.0 17.0 17.5	•	
1 2 3 4	14.0 15.0 16.0 17.5	JUNE 11.5 10.0 10.0 10.5	12.5 12.5 13.0 14.0	20.5 18.5 16.5 16.0	JULY 16.0 16.0 14.5 13.5	18.0 17.0 15.5 14.5	21.0 14.5 17.5 18.0	AUGUST 15.0 13.5 14.0 17.0	17.5 14.0 15.5 17.5	16.0 16.0 16.0 17.0	SEPTEME 13.0 14.0 12.5 12.0	3ER 14.0
1 2 3 4 5 6 7 8 9	14.0 15.0 16.0 17.5 17.5 16.0 17.0 17.5 16.5	JUNE 11.5 10.0 10.0 10.5 12.5 13.0 14.5 13.5 12.5	12.5 12.5 13.0 14.0 15.0 14.5 16.0 15.5 14.0	20.5 18.5 16.5 16.5 21.5 23.5 21.0 19.5 18.0	JULY 16.0 16.0 14.5 13.5 15.5 19.0 16.5 15.0 14.5	18.0 17.0 15.5 14.5 18.0 21.0 18.5 17.0 16.5	21.0 14.5 17.5 18.0 19.5 19.0 18.5 16.0	AUGUST 15.0 13.5 14.0 17.0 17.0 17.5 17.0 16.0 14.5	17.5 14.0 15.5 17.5 18.0 18.5 17.5 17.0 15.0	16.0 16.0 17.0 17.5 15.0 14.5 17.5	SEPTEMN 13.0 14.0 12.5 12.0 14.5 12.0 11.5 14.5	14.0 15.0 14.5 14.5 16.0 13.5 13.0 16.0 18.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	14.0 15.0 16.0 17.5 17.5 16.0 17.0 17.5 16.5 16.5	JUNE 11.5 10.0 10.0 10.5 12.5 13.0 14.5 12.5 12.0 12.5 12.0 14.5	12.5 12.5 13.0 14.0 15.0 14.5 14.0 14.5 14.0 14.5 14.0	20.5 18.5 16.5 16.0 21.5 23.5 21.0 19.5 18.0 14.5	JULY 16.0 16.0 14.5 13.5 15.5 19.0 16.5 13.5 13.5 15.0 15.5	18.0 17.0 15.5 14.5 18.0 21.0 18.5 17.0 16.5 14.0	21.0 14.5 17.5 18.0 19.5 19.0 19.0 18.5 16.0 14.5	AUGUST 15.0 13.5 14.0 17.0 17.0 17.5 17.0 14.5 12.5 13.0 14.5 14.5	17.5 14.0 15.5 17.5 18.0 18.5 17.0 15.0 14.0	16.0 16.0 17.0 17.5 15.0 14.5 17.5 19.5 19.0 18.5 18.0 16.5	SEPTEMN 13.0 14.0 12.5 12.0 14.5 12.0 11.5 14.5 17.0 17.0 16.0 16.5 14.0	14.0 15.0 14.5 14.5 16.0 13.5 13.0 16.0 18.5 17.0 17.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	14.0 15.0 16.0 17.5 17.5 16.0 17.5 16.5 16.5 16.5 18.5 18.5 16.5 14.5	JUNE 11.5 10.0 10.0 10.5 12.5 13.0 14.5 12.0 12.5 12.0 14.5 12.0 14.5 12.0 12.5 12.0	12.5 12.5 13.0 15.0 14.0 15.5 14.0 14.5 14.0 16.0 16.0 14.5 14.5 14.0 14.5 14.5	20.5 18.5 16.0 21.5 23.5 21.0 19.5 18.0 14.5 18.5 17.0 17.0 19.0 21.0 20.5	JULY 16.0 16.0 14.5 13.5 15.5 19.0 16.5 15.0 14.5 15.5 16.0 16.5 17.0 16.5 17.5 15.5	18.0 17.0 15.5 14.5 18.0 21.0 18.5 17.0 16.5 14.0 16.5 17.0 16.5 17.0 16.5	21.0 14.5 17.5 18.0 19.5 19.0 18.5 16.5 16.5 20.0 21.5 22.5 21.0 19.5	AUGUST 15.0 13.5 14.0 17.0 17.0 16.0 14.5 12.5 12.5 14.5 14.5 14.5 14.5 14.5 16.5	17.5 14.0 15.5 17.5 18.0 18.5 17.5 17.0 15.0 15.0 15.0 17.0 19.0	16.0 16.0 17.0 17.5 15.0 14.5 17.5 19.0 18.5 18.0 16.5 14.0 12.0	SEPTEME 13.0 14.0 12.5 12.0 14.5 12.0 11.5 14.5 17.0 16.0 16.5 14.0 12.5 10.0 9.5 11.0	14.0 15.0 14.5 14.5 16.0 13.5 13.0 16.0 18.5 17.0 17.0 13.5 11.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24	14.0 15.0 17.5 17.5 16.0 17.5 16.5 16.0 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 16.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17	JUNE 11.5 10.0 10.0 10.5 12.5 13.0 14.5 12.0 12.0 14.0 12.5 12.0 13.0 14.0 14.0 14.0 14.5	12.5 13.0 15.0 15.0 14.0 14.5 14.0 14.5 14.0 14.5 14.5 14.5 14.5 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	20.5 18.5 16.0 21.5 23.5 21.0 19.5 18.0 14.5 18.5 17.0 17.0 21.0 20.5 19.0 21.0 21.0 22.0	JULY 16.0 16.0 14.5 13.5 15.5 19.0 16.5 15.0 15.5 15.0 15.5 16.0 16.5 17.5 16.0 18.5 17.5 17.0 17.0	18.0 17.0 15.5 18.0 21.0 18.5 17.0 16.5 17.0 16.5 17.0 17.5 18.5	21.0 14.5 17.5 18.0 19.5 19.0 18.5 16.0 14.5 17.5 18.0 21.5 22.5 21.0 22.5 22.0 20.5	AUGUST 15.0 13.5 14.0 17.0 17.0 16.0 14.5 12.5 14.5 14.5 14.5 17.5 14.5 17.5 17.6 16.5 17.5 17.6 16.5	17.5 14.0 15.5 18.0 18.5 17.5 17.0 14.0 15.5 15.0 17.0 19.0 21.0 19.5 18.0 19.5 18.0 19.5	16.0 16.0 17.0 17.5 15.0 14.5 17.5 19.0 18.5 18.0 16.5 14.0 12.0 12.5 12.5 11.0	SEPTEME 13.0 14.0 12.5 12.0 14.5 12.0 14.5 17.0 16.0 17.0 16.5 14.0 12.5 10.0 9.0 7.0 8.0 9.0 9.5	14.0 15.0 14.5 14.5 16.0 13.5 13.0 16.0 18.5 17.0 15.0 17.0 11.5 11.0 12.0 10.0

04015330 KNIFE RIVER NEAR TWO HARBORS, MN

LOCATION.--Lat 46°56'49", long 91°47'32", in SWANWA sec.31, T.52 N., R.11 W., Lake County, Hydrologic Unit 04010102, on right bank 600 ft (183 m) downstream from bridge on U.S. Highway 61, 0.5 mi (0.8 km) upstream from bridge on County Highway 102, in town of Knife River, 0.8 mi (1.3 km) upstream from Lake Superior, and 7.8 mi (12.6 km) southwest of Two Harbors.

DRAINAGE AREA.--85.6 $m1^2$ (221.7 km^2).

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1970-71, July 1974 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Altitude of gage is 640 ft (195 m), from topographic map.

REMARKS .-- Records fair except those for winter period, which are poor.

AVERAGE DISCHARGE.--8 years, 86.0 ft3/s (2.436 m3/s), 13.64 in/yr (346 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,440 ft 3 /s (211 m 3 /s) May 10, 1979, gage height, 11.16 ft (3.402 m); minimum, no flow Dec. 2, 1976 to Mar. 4, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 800 ft³/s (22.7 m³/s) and maximum (*):

Date	Time	Discha (ft ³ /s)	arge (m ³ /s)	Gage h (ft)	eight (m)	Date	:	Time	Disc (ft ³ /s)	harge (m ³ /s)	Gage (ft)	height (m)
Oct. 17 Apr. 17 Apr. 23	2030 2015 2315 daily	1010 1880 1540 discharge, 3	28.6 53.2 43.6 .5 ft ³ /s	5.50 6.62 6.29	1.676 2.018 1.917 3/s) Jan	May July July July . 12.	5 3 7 9	0645 0800 0530 1315	2120 *3270 2020 1420	60.9 92.6 57.2 40.2	6.95 *8.03 6.73 5.99	2.118 2.448 2.051 1.826

		DISCHARG	E, IN CU	BIC FEET		D, WATER IEAN VALU	YEAR OCTO JES	BER 1981	TO SEPTEM	BER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	YAN	JUN	JUL	AUG	SEP
1 2 3 4 5	128 93 54 222 193	39 34 30 28 29	23 22 21 20 20	6.9 6.2 5.4	4.4 4.5 4.6 4.6	5.8 5.8 5.8 6.0	450 400 540 580 500	176 155 121 141 1280	30 30 26 23 20	27 19 1180 378 356	30 24 21 21 19	16 24 20 16 12
6 7 8 9 10	128 83 61 44 151	28 23 23 20 20	19 19 18 18	5.1 4.8 4.5 4.2 4.0	4.7 4.7 4.8 4.8	6.0 6.2 6.2 6.2	400 300 250 230 200	572 332 221 164 247	19 18 19 19 61	597 1330 427 726 629	18 17 25 22 18	9.9 9.0 8.8 8.4 9.8
11 12 13 14 15	138 87 85 438 229	19 18 19 19	17 16 16 15 15	3.8 3.5 3.6 3.6	4.9 4.9 5.0 5.0	6.4 6.6 6.8 7.0	180 370 734 937 1160	258 203 463 391 271	48 40 33 25 107	413 194 114 79 70	15 13 17 29 24	18 40 144 82 94
16 17 18 19 20	133 400 480 218 166	19 20 19 18 16	14 14 13 13	3.7 3.7 3.7 3.8 3.8	5.0 5.2 5.2 5.2 5.2	7.3 7.6 7.9 8.2 8.5	1270 1580 1150 734 589	240 239 471 362 237	80 48 35 28 34	209 261 122 65 46	19 15 12 11 10	106 87 84 56 45
21 22 23 24 25	133 97 76 62 54	16 16 16 15 15	12 11 11 10 10	3.9 3.9 4.0 4.1	5.2 5.4 5.4 5.4	9.0 9.4 9.8 10	564 713 1000 1300 1070	163 124 96 79 65	45 35 26 21 19	66 95 52 37 39	9.1 13 21 15 14	37 28 24 31 33
26 27 28 29 30 31	44 49 48 47 47	20 27 27 24 23	9.6 9.2 8.6 8.2 7.8 7.4	4.1 4.2 4.2 4.3 4.3	5.4 5.6 5.6	13 19 24 30 70 200	598 402 295 240 202	56 48 42 37 34 30	16 14 14 50 42	33 28 22 21 44 43	14 11 9.5 9.0 9.3 9.8	28 23 21 21 22
TOTAL MEAN MAX MIN CFSM IN.	4230 136 480 42 1.59 1.84	659 22.0 39 15 .26 .29	446.8 14.4 23 7.4 .17 .19	135.7 4.38 6.9 3.5 .05	140.1 5.00 5.6 4.4 .06	537.5 17.3 200 5.6 .20 .23	18938 631 1580 180 7•37 8•23	7318 236 1280 30 2.76 3.18	1025 34.2 107 14 .40	7722 249 1330 19 2.91 3.36	514.7 16.6 30 9.0 .19	1157.9 38.6 144 8.4 .45
CAL YR :				84.0 117	MAX 1850 MAX 1580	MIN 2 MIN 3			1 13.32 1 18.61			

NOTE .-- No gage-height record Feb. 4 to Mar. 10.

04015475 PARTRIDGE RIVER ABOVE COLBY LAKE, AT HOYT LAKES, MN

LOCATION.--Lat 47°31'38", long 92°07'21", in SW&NE& sec.9, T.58 N., R.14 W., St. Louis County, Hydrologic Unit 04010201, in Superior National Forest, 10 ft (3.0 m) upstream from bridge on County Highway 110, 1 mi (1.6 km) east of Hoyt Lakes.

DRAINAGE AREA.--106 mi^2 (275 km^2) of which 6.0 mi^2 (15.5 km^2) is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1978 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 1,455 ft (443 m), from topographic map.

REMARKS .-- Records fair except those for period of no gage-height record, Jan. 27 to Mar. 2, which are poor.

EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 2,020 ft³/s (57.2 m³/s) Apr. 22, 1979, gage height, 10.89 ft (3.319 m); minimum, 0.88 ft³/s (0.025 m³/s) Feb. 15, 1981, gage height, 4.81 ft (1.466 m).

EXTREMES OUTSIDE PERIOD OF RECORD.--A discharge of 0.50 ft3/s (0.014 m3/s) was measured Aug. 23, 1976.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 609 $\rm ft^3/s$ (17.2 $\rm m^3/s$) Apr. 27, gage height, 8.42 ft (2.566 m); minimum daily, 2.7 $\rm ft^3/s$ (0.076 $\rm m^3/s$) Jan. 20, 21, 25, 26.

DISCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1981	TO	SEPTEMBER	1982
					MEA	N VALU	ES					

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15 21 28 40 57	102 94 83 77 69	18 18 18 17 16	8.5 8.3 8.4 8.4 7.9	2.9 2.9 2.9 2.9	4.0 4.0 4.0 3.7 3.7	11 13 16 18 19	345 286 246 234 312	67 61 54 52 46	17 15 18 26 44	49 42 39 40 38	56 61 72 81 77
6 7 8 9 10	76 93 100 115 134	66 60 55 52 48	16 15 15 15 14	7.8 7.4 7.4 7.1 6.8	3.0 3.0 3.0 3.0 3.0	3.7 3.6 3.5 3.4 3.3	20 20 20 20 20	398 472 510 485 442	42 · 37 36 36 43	71 127 181 241 332	36 64 141 196 200	63 52 46 44 46
11 12 13 14 15	130 114 110 152 183	48 48 48 46 42	14 14 14 13	6.1 5.8 5.2 5.0 4.7	3.0 3.0 3.0 3.0	3.3 3.2 3.5 3.2 3.2	20 21 22 30 71	436 472 530 562 566	58 82 86 77 77	403 445 451 420 353	170 131 109 95 87	50 64 118 169 185
16 17 18 19 20	213 216 227 239 256	39 37 35 33 30	13 13 12 12 11	4.7 3.5 3.2 3.0 2.7	3.1 3.2 3.3 3.4 3.6	3.0 3.2 3.5 3.7 3.2	191 291 362 410 461	548 510 461 426 401	73 69 62 55 50	291 238 192 157 130	77 68 62 64 67	177 171 173 175 172
21 22 23 24 25	260 244 216 185 160	26 24 22 21 20	11 11 10 10 9.8	2.7 2.8 2.8 2.8 2.7	3.8 4.0 4.0 4.0	3.2 3.0 3.2 3.2 3.2	489 455 439 461 513	377 339 288 232 187	46 42 36 30 29	116 119 113 100 91	68 86 110 121 117	156 134 115 109 104
26 27 28 29 30 31	139 127 117 109 106 104	20 19 19 19 19	9.2 9.2 8.8 8.8 8.8	2.7 2.8 2.8 2.8 2.8 2.8	4.0 4.0 4.0	3.5 3.7 4.5 5.0 8.0	569 602 576 502 420	156 130 106 94 87 76	25 21 18 19 18	83 71 60 58 59 55	106 93 82 74 67 61	97 90 85 82 83
TOTAL MEAN MAX MIN CFSM IN.	4286 138 260 15 1.30 1.50	1321 44.0 102 19 .42 .46	396.4 12.8 18 8.8 .12 .14	152.5 4.92 8.5 2.7 .05	92.9 3.32 4.0 2.9 .03	114.6 3.70 8.0 3.0 .04	7082 236 602 11 2.23 2.49	10714 346 566 76 3.26 3.76	1447 48.2 86 18 .46	5077 164 451 15 1.55 1.78	2760 89.0 200 36 .84 .97	3107 104 185 44 •98 1•09

CAL YR 1981 TOTAL 30483.12 MEAN 83.5 MAX 600 MIN .96 CFSM .79 IN 10.70 WTR YR 1982 TOTAL 36550.40 MEAN 100 MAX 602 MIN 2.7 CFSM .94 IN 12.83

04015475 PARTRIDGE RIVER ABOVE COLBY LAKE AT HOYT LAKES, MN--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1976 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: February 1976 to current year.
WATER TEMPERATURES: February 1976 to current year.

INSTRUMENTATION .-- Specific conductance and water temperature recorder since February 1976.

REMARKS.--Extremes are published for years with 80 percent or more daily record.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE (water year 1980): Maximum, 268 micromhos Aug. 28 and 29, 1980; minimum, 63 micromhos
April 11, 1980.
WATER TEMPERATURES (water years 1979, 1980): Maximum, 27.5°C June 25, 1980; minimum, 0.0°C on many days during winter periods.

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5				123 122 122 121 118	122 122 120 118 115	122 122 122 120 116	131 131 129 130 132	130 129 128 129 129	130 130 129 129 131			
6 7 8 9				115 114 112 112 112	114 112 110 110 112	114 112 111 111 112	135 138 141 147 154	133 136 138 141 148	134 137 140 145 152			
11 12 13 14 15				112 111 112 112 112	110 110 110 110 108	110 110 111 112 111	160 164 167 168 170	155 161 165 167 168	158 163 166 168 169	219 219	216 216	218 219
16 17 18 19 20	114 107 94 92 91	107 94 91 91 88	110 100 92 92 90	108 104 106 110 106	104 104 103 92 92	106 104 104 104 110	172 173 173 173 173	170 172 173 173 173	171 173 173 173 173	216 221 224 225 226	182 199 221 223 223	205 214 223 224 225
21 22 23 24 25	88 83 86 87 88	83 82 83 86 85	85 82 85 86 87	121 123 124 126 127	116 121 123 124 126	118 122 124 126 126	173 173 173 172 173	173 172 171 171 171	173 173 172 172 172	227 228 228 229 230	226 227 227 226 229	227 227 228 229 230
26 27 28 29 30 31	96 105 112 120 122 122	89 96 105 112 121	93 101 109 116 122 122	127 129 130 130 131	126 127 129 130 130	126 128 129 130 130	173 	173	173	231 232 232 232 231 232	230 231 231 231 221 221 230	231 231 231 232 228 231
MONTH				131	92	117						

STREAMS TRIBUTARY TO LAKE SUPERIOR

04015475 PARTRIDGE RIVER ABOVE COLBY LAKE AT HOYT LAKES, MN--Continued

MONTH

DAY

MAX MIN MEAN

STREAMS TRIBUTARY TO LAKE SUPERIOR

04015475 PARTRIDGE RIVER ABOVE COLRY LAKE AT HOYT LAKES, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN

		OCTOBE	R		NOAEWBE	R		DECEMBE	₹		JANUAR	Y
1 2 3 4 5				5.5 5.5 5.5 5.5 5.5	4.5 4.0 4.0 4.5 4.5	5.0 5.0 4.5 5.0 5.5	.0 .0 .0	.0 .0 .0	.0			
6 7 8 9 10				4·5 4·5 4·0 2·0 2·0	3.5 3.5 2.0 1.0	4.0 4.0 3.5 1.5	.0 .0 .0	.0 .0 .0	.0 .0 .0			
11 12 13 14 15				1.5 2.5 3.0 4.0 4.0	1.0 1.0 2.0 3.0 3.0	1.0 1.5 2.5 3.5 3.5	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0	.0	.0
16 17 18 19 20	10.0 9.5 9.0 6.0	8.5 9.0 6.0 5.0	9.5 9.5 7.5 5.5	5.0 4.5 4.0 2.5 1.5	4.0 4.0 2.5 1.5	4.5 4.5 3.5 2.0	.0 .0 .0	.0 .0 .0	0 0	.0 .0 .0	.0 .0 .0	.0 .0 .0
21 22 23 24 25	5.0 4.0 2.0 1.0	4.0 2.5 1.0 .5	4.5 3.0 1.5 .5	.0 .0 .5 1.0	.0 .0 .5	.0 .0 .5 .5	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0
26 27 28 29 30 31	1.0 1.5 1.5 3.5 5.5 6.0	.0 1.0 1.5 3.5 5.0	.5 1.0 1.0 2.0 4.0 5.5	•5 •5 •0 •0	.5 .0 .0 .0	.5 .0 .0	.0	.0	.0	.0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0
MONTH				5•5	.0	2.5						
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5		FEBRUAR	Ā	.0 .0	MARCH0 .0	.0	•5 •5 •5 •5	•5 •5 •5 •5 •5	• 55 • 55 • 55 • 55 • 55	9.5 10.5 11.0 13.5 13.0	MAY 8.0 8.5 9.0 10.5 12.0	8.5 9.5 10.0 11.5 12.5
2 3 4		FEBRUAR	У	.0 .0	 .0 .0	.0	•5 •5	•5 •5 •5	•5 •5	10.5 11.0 13.5	8.0 8.5 9.0 10.5	9.5 10.0 11.5
2 3 4 5 6 7 8 9		FEBRUAR	У	.0 .0 .0 .0 .0 .0 .0 .0	.0	.0 .0 .0	.5 .5 .0 .0	.5 .5 .5 .5 .5	.5 .5 .0 .0	10.5 11.0 13.5 13.0 12.0 10.5 10.5	8.0 8.5 9.0 10.5 12.0 10.5 9.0 7.5 9.0	9.5 10.0 11.5 12.5 11.5 9.5 9.0 10.0
2 3 4 5 6 7 8 9 10		FEBRUAR	Ϋ́	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .5 .0 .5	.55 .55 .50 .00 .00 .00	5555 000005 55555	10.5 11.0 13.5 13.0 12.0 10.5 10.5 11.0 11.0 11.0	8.0 8.5 9.0 10.5 12.0 10.5 9.0 7.5 9.0 9.0	9.5 10.0 11.5 12.5 11.5 9.5 9.0 10.0 11.0 11.0 11.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		FEBRUAR	Ā	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.0 .0 .0 .0 .0 .0 .0 .0	.5 .5 .0 .0 .5 .0 .5 .1.0 .5 1.0	.5 .5 .5 .5 .0 .0 .0 .0 .0	.555 000005 55555 5	10.5 11.0 13.5 13.0 10.5 10.5 11.0 11.0 11.0 11.0 16.0	8.0 8.5 9.0 10.5 12.0 10.5 9.0 7.5 9.0 9.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5	9.5 10.0 11.5 12.5 11.5 9.5 9.0 10.0 11.0 11.0 11.5 14.0

STREAMS TRIBUTARY TO LAKE SUPERIOR

04015475 PARTRIDGE RIVER ABOVE COLBY LAKE AT HOYT LAKES, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST	3		SEPTEME	BER
1 2 3 4 5	19.0 17.0 18.5 19.5 20.0	16.0 14.0 15.0 15.5 16.5	16.5 15.0 16.5 17.0 18.0	23.0 22.5 21.0 21.5 24.0	18.0 19.0 20.0 19.0 20.0	20.5 20.5 20.0 20.0 22.0	22.0 21.5 	20.5 19.5 	21.5	17.5	15.0	16.0
6 7 8 9 10	20.0 19.0 18.0 18.0 18.5	17.0 17.5 15.5 16.5 16.0	18.5 17.5 16.5 17.0	25.5 24.0 22.5 21.5 18.5	22.5 21.5 20.5 18.5 17.0	23.5 22.5 21.5 20.0 17.5						
11 12 13 14 15	18.0 18.0 19.0 19.0	16.0 16.0 16.0 18.0 17.0	17.0 17.0 17.5 18.5	18.5 20.0 19.5 20.5 21.5	16.0 17.5 18.0 18.5 19.5	17.0 18.5 19.0 19.5 20.5						
16 17 18 19 20	18.5 18.5 18.0 17.0 18.0	16.5 16.0 17.0 16.0 15.5	17.5 17.5 17.5 16.5 16.5	21.5 23.5 22.0 21.5 22.0	20.5 21.0 21.0 20.0 19.5	21.0 22.0 21.5 20.5 20.5						
21 22 23 24 25	18.5 19.5 19.5 19.0 20.5	16.0 16.5 18.0 18.0	17.0 18.0 18.5 18.5	23.0 24.0 24.5 23.0 22.5	21.5 21.0 21.5 22.0 21.5	22.0 22.5 23.0 22.5 22.0	21.5 21.0 21.0 20.0 19.5	20.0 19.0 19.5 19.0 18.0	20.5 20.0 20.0 19.5 18.5			
26 27 28 29 30 31	21.0 21.5 20.0 20.5 21.5	17.0 18.5 18.0 17.0	19.0 20.0 19.0 18.5 19.0	24.0 24.5 22.5 23.0 23.0	21.5 21.5 21.5 21.5 21.0 21.5	22.5 22.5 23.0 22.0 21.5 22.0	18.0 17.0 16.5 16.0 16.0	17.0 15.5 14.5 15.0 14.5	17.5 16.0 15.5 15.5 15.5			
HTNOM	21.5	14.0	17.5	25.5	16.0	21.0						

04016000 PARTRIDGE RIVER NEAR AURORA, MN

LOCATION.--Lat 47°31'02", long 92°11'24", in SE4SW4 sec.12, T.58 N., R.15 W., St. Louis County, Hydrologic Unit 04010201, on right bank at upstream side of highway bridge, 1,000 ft (305 m) downstream from Second Creek, 2.5 mi (4.0 km) east of Aurora, and 2.8 mi (4.5 km) upstream from mouth.

DRAINAGE AREA.--161 mi² (417 km²) of which 13.3 mi² (34.4 km²) is noncontributing.

PERIOD OF RECORD .-- August 1942 to September 1982 (discontinued).

REVISED RECORDS.--WSP 974: 1942. WSP 1307: 1943(M). WDR MN-77-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,402.30 ft (427.421 m) National Geodetic Vertical Datum of 1929.

Aug. 5, 1942, to Aug. 25, 1944, nonrecording gage, and Aug. 26, 1944, to July 1, 1956, water-stage recorder at site 45 ft (14 m) downstream at same datum.

REMARKS.--Records good except those for winter period and those for period of no gage-height record, Aug. 4 to Sept. 30, which are fair. Flow regulated at times by storage in off-channel Partridge Reservoir, formerly known as Whitewater Lake. Reservoir formed from lake by levees around marsh areas and natural outlet. Usable capacity, 20,000 acre-ft (24.7 hm³) between elevations 1,410 ft (430 m), natural lake level, and 1,440 ft (439 m). Storage began Apr. 9, 1955. Storage in reservoir obtained from Colby Lake during periods of high flow; release from storage returned to Colby Lake to maintain lake elevation during diversion for iron-ore processing. Diversion began Feb. 7, 1956. Some seepage losses from reservoir bypass station. Flow also affected by mining activities in Second Creek basin.

AVERAGE DISCHARGE (adjusted for storage and diversion).--40 years, 126 ft 3 /s (3.568 m 3 /s), 10.63 in/yr (270 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,230 ft³/s (91.5 m³/s) May 10, 1950, gage height, 7.86 ft (2.396 m); minimum daily, 2.2 ft³/s (0.062 m³/s) Jan. 30, 31, 1961; minimum gage height, 0.88 ft (0.268 m) Mar. 2, 1963.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 700 ft 3 /s (19.8 m 3 /s) Apr. 27, May 14, gage height, 4.72 ft (1.439 m); minimum daily, 9.8 ft 3 /s (0.28 m 3 /s) Mar. 9.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES JUL AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN 68 66 63 85 53 524 60 61 19 9.8 55 65 626 120 515 14 18 95 hh an 38 84.4 TOTAL 508.8 MEAN 93.4 26.1 22.3 16.4 60.3 17.7 23 MAX 9.8 +69.5 +14.5 +8.47 +1.81 +1.19 +91.7 +20.9 +16.3 +17.9 +13.9 +11.4 +0.01 MEAN t 74.8 34.6 24.1 17.7 17.6 .46 .11 .76 CFSM I 1.01 .21 .15 .11 1.95 2.81 .63 1.46 .89 2.18 1.68 .88 1.00 1.17 .52 .25 .17 .13 3.24 .70 .11 CAL YR 1981 TOTAL 32863.5 MEAN 90.0 MAX 722 MIN 5.6 MEAN ‡ CFSM # 0.71

MIN 9.8

MEAN ‡

CFSM ‡

0,88

MEAN

MAX 693

43852.8

WTR YR 1982 TOTAL

[†] Change in contents in Partridge Reservoir and diversion to iron-ore processing plant, equivalent in cubic feet per second; furnished by Erie Mining Co.

Adjusted for change in contents and diversion.

04016500 ST. LOUIS RIVER NEAR AURORA, MN

LOCATION.--Lat 47°29'30", long 92°14'20", in NW&SW& sec.22, T.58 N., R.15 W., St. Louis County, Hydrologic Unit 04010201, on left bank at upstream side of highway bridge, 0.8 mi (1.3 km) downstream from Partridge River and 1.5 mi (2.4 km) south of Aurora.

DRAINAGE AREA .-- 290 mi2 (751 km2) of which 13.3 mi2 (34.4 km2) is noncontributing.

PERIOD OF RECORD. -- August 1942 to current year.

REVISED RECORDS.--WSP 1337: 1950. WDR MN-77-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,371.24 ft (417.954 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 26, 1944, nonrecording gage at same site and datum.

REMARKS.--Records good except those for winter period, which are fair. Flow regulated at times by storage in off-channel Partridge Reservoir, formerly known as Whitewater Lake. Reservoir formed from lake by levees around marsh areas and natural outlet. Available capacity 20,000 acre-ft (24.7 hm²) between elevations 1,410 ft (430 m), natural lake level, and 1,440 ft (439 m). Storage in reservoir obtained from Colby Lake during periods of high flow; release from storage returned to Colby Lake to maintain lake elevation during diversion for iron-ore processing. Diversion began Feb. 7, 1956. Some seepage losses from reservoir enter above station. Flow also affected by mining activities in Second Creek (station 04015500) basin.

AVERAGE DISCHARGE (adjusted for storage and diversion).--40 years, 246 ft 3 /s (6.967 m 3 /s), 11.52 in/yr (293 mm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 5,380 ft 3 /s (152 m 3 /s) May 14, 1950, gage height, 8.37 ft (2.551 m); minimum daily, 4.0 ft 3 /s (0.11 m 3 /s) Jan. 29 to Feb. 10, 1977.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,440 ft 3 /s (40.8 m 3 /s) May 14, gage height, 4.22 ft (1.286 m); minimum daily, 28 ft 3 /s (0.79 m 3 /s) Mar. 6-8.

		DIDOMINI	, 001	.10 11111 1	. Hr. Dijoc	MEAN VAL	UES	100811 1701	10 55115		•	
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	67 62 62 89 100	301 287 277 261 231	92 93 93 85 83	52 52 51 50 49	35 34 34 34 33	29 29 29 29 29	70 90 110 120 115	1020 940 861 877 995	294 265 238 217 198	84 79 111 106 133	237 216 204 189 173	215 225 222 223 219
6 7 8 9 10	125 116 108 114 124	221 223 228 213 189	83 79 76 70 67	48 47 47 46 46	33 33 32 32 32	28 28 28 29 30	110 105 100 100	1100 1150 1150 1130 1180	180 171 159 162 190	183 277 361 492 716	172 188 234 256 268	194 166 156 152 151
11 12 13 14 15	125 121 142 207 234	170 160 154 150 147	70 73 72 70 67	45 45 44 44 43	31 31 31 31 30	32 35 38 42 45	100 105 110 150 250	1240 1250 1350 1420 1410	198 217 224 226 231	897 979 984 991 981	315 332 340 327 305	154 202 278 321 369
16 17 18 19 20	253 298 357 373 408	143 137 132 124 117	63 62 62 62 61	43 42 42 41 41	30 30 30 30 30	44 43 42 40 38	451 588 592 546 530	1350 1300 1280 1210 1130	224 215 202 190 179	953 890 802 726 647	266 243 242 249 240	381 405 392 404 408
21 22 23 24 25	421 405 443 454 434	118 107 106 103 103	60 59 58 58 57	40 40 39 39 38	30 30 30 30 29	37 37 37 38 39	552 682 820 950 1070	1060 978 884 781 683	166 153 140 124 116	580 522 481 460 431	244 308 343 354 343	394 369 346 327 313
26 27 28 29 30 31	408 376 344 319 318 311	108 109 104 98 93	56 55 55 54 54 53	38 37 37 36 36 35	29 29 29 	40 43 45 47 50 60	1150 1190 1200 1170 1100	600 528 462 404 359 325	112 104 100 101 91	396 362 330 316 291 258	323 295 270 255 240	297 284 273 270 281
TOTAL MEAN MAX MIN + MEAN \$ CFSM \$ IN. \$	7718 249 454 62 +69.5 318 1.10 1.27	4914 164 301 93 +14.5 178 .61	2102 67.8 93 53 +8.47 76.3 .26	1333 43.0 52 35 +1.81 44.8 .15	872 31.1 35 29 +0.01 31.2 .11	1160 37.4 60 28 +1.19 38.6 .13	14326 478 1200 70 +91.7 569 1.96 2.19	981 1420 325 +20.9 1002	5387 180 294 91 +16.3 196 .68	15819 510 991 79 +17.9 528 1.82 2.10	8199 264 354 172 +13.9 278 .96 1.11	8391 280 408 151 +11.4 291 1.00
CAL YR WTR YR	1981 TOTA		MEAN 2	11 MAX 76 MAX	1370 1420	MIN 23 MIN 28	MEAN ‡ MEAN ‡	235 CFSM 298 CFSM		IN ‡	11.02 13.96	

[†] Change in contents in Partridge Reservoir and diversion to iron-ore processing plant, equivalent in cubic feet per second; furnished by Erie Mining Co. ‡ Adjusted for change in contents and diversion.

04018750 ST. LOUIS RIVER AT FORBES, MN

LOCATION.--Lat 47° 21'48", long 92°35'56", in NEASEA sec.3, T.56 N., R.18 W., St. Louis County, Hydrologic Unit 04010201, on right bank at downstream side of highway bridge, 0.5 mi (0.8 km) downstream from Eveleth Taconite Company dam, 0.6 mi (1.0 km) south of Forbes, 1.8 mi (2.9 km) upstream from Elbow Creek.

DRAINAGE AREA.--713 mi² (1,847 km²).

PERIOD OF RECORD. -- August 1964 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,293.11 ft (394.140 m) National Geodetic Vertical Datum of 1929. Prior to Oct. 28, 1964, nonrecording gage at same site and datum.

REMARKS.--Records good except those for winter periods, which are poor. Natural flow of stream affected by continually changing iron-mining activities that include diversions for iron-ore processing, regulation of storage reservoirs and tailing ponds, and mine pit dewatering. There is some regulation at medium and low flows by Eveleth Taconite Company dam 1.5 mi (2.4 km) upstream.

AVERAGE DISCHARGE.--18 years, 546 ft 3 /s (15.46 m 3 /s), 10.40 in/yr (264 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,200 ft³/s (176 m³/s) Apr. 25, 1979, gage height, 17.71 ft (5.398 m); minimum daily, 15 ft³/s (0.42 m³/s) Jan. 9, 1981; minimum gage height, 5.14 ft (1.567 m) Nov. 26, 1972.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 3,010 ft 3 /s (85.2 m 3 /s) May 19, gage height, 12.66 ft (3,859 m); maximum gage height, 15.02 ft (4.578 m) Apr. 20 (backwater from ice); minimum daily discharge, 30 ft 3 /s (0.85 m 3 /s) Mar. 27, 29; minimum gage height, 5.31 ft (1.618 m) Dec. 7, 9, 15.

		DISCHARG	E, IN CU	BIC FEET	PER SEC	OND, WATEI MEAN VAL	R YEAR OCTO	OBER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	129 164 168 244 322	579 556 537 496 478	220 228 219 257 135	115 110 110 105 105	80 80 75 75 75	70 70 70 70 60	60 150 170 150 150	2200 2050 1890 1870 2140	874 722 680 504 624	264 256 346 482 588	478 447 425 403 380	376 359 360 351 340
6 7 8 9 10	309 332 331 324 346	441 412 404 392 366	246 178 216 46 206	105 150 50 120 100	75 75 75 75 75	60 70 90 60 50	140 140 140 130 130	2320 2240 2230 2190 2280	573 350 504 419 566	740 909 951 1120 1680	375 393 405 433 439	332 308 287 270 266
11 12 13 14 15	372 370 385 539 610	340 318 309 297 289	268 110 188 268 43	95 95 100 95 95	75 75 75 75 75	100 40 80 90 60	130 130 150 180 250	2490 2510 2610 2790 2900	428 559 559 374 552	1810 1870 1870 1840 1790	446 490 577 634 598	266 305 478 587 600
16 17 18 19 20	599 653 863 934 937	281 272 269 257 245	280 300 50 300 170	90 90 90 90 85	75 75 75 70 70	70 100 60 70 100	400 1000 1300 1500 1700	2910 2860 2940 3000 2890	591 444 473 514 507	1760 1680 1550 1400 1270	541 483 435 434 419	645 685 761 769 756
21 22 23 24 25	983 986 950 944 930	203 66 344 156 102	160 200 170 150 200	85 85 85 85	70 70 70 70 70	50 120 35 110 70	1900 2100 2190 2310 2380	2690 2480 2280 2080 1870	362 460 437 245 381	1130 1020 878 840 808	398 438 519 532 543	755 711 650 634 595
26 27 28 29 30 31	868 824 823 632 692 615	265 282 253 228 235	150 130 125 120 120 115	80 80 80 80 80	70 70 70 	110 30 120 30 140 100	2460 2460 2440 2400 2320	1680 1490 1360 1210 868 975	374 350 173 353 297	744 679 617 581 572 525	518 485 449 422 403 390	552 515 480 450 420
TOTAL MEAN MAX MIN CFSM IN.	18178 586 986 129 .82	9672 322 579 66 •45	5568 180 300 43 .25 .29	2900 93.5 150 50 .13	2060 73.6 80 70 .10	2355 76.0 140 30 .11 .12	31060 1035 2460 60 1.45 1.62	68293 2203 3000 868 3.09 3.56	14249 475 874 173 .67	32570 1051 1870 256 1.47 1.70	14332 462 634 375 •65 •75	14863 495 769 266 •69
CAL YR WTR YR			MEAN 5 MEAN 5		2840 3000	MIN 15 MIN 30	CFSM .71 CFSM .83	IN 9.0 IN 11.				

NOTE.--No gage-height record Jan. 14 to Mar. 3.

04024000 ST. LOHIS RIVER AT SCANLON, MN

LOCATION.--Lat 46°42'12", long 92°25'07", in NW4 sec.30, T.49 N., R.16 W., Carlton County, Hydrologic Unit 04010201, on right bank 25 ft (8 m) downstream from lower bridge on U.S. Highway 61 at Scanlon, 0.6 mi (1.0 km) downstream from Minnesota Power and Light Co. powerplant, 3 mi (5 km) upstream from Thomson Reservoir, and 3.2 mi (5.1 km) upstream from Midway River.

DRAINAGE AREA.--3,430 mi² (8,880 km²), approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1908 to current year. Monthly discharge only for some periods published in WSP 1307. Published as "near Thomson" 1908-50.

REVISED RECORDS .-- WSP 1337: 1911-12.

GAGE.--Water-stage recorder. Datum of gage is 1,101.23 ft (335.655 m) National Geodetic Vertical Datum of 1929. Oct. 5, 1909, to Sept. 5, 1914, nonrecording gage 3 mi (5 km) downstream and 50 ft (15 m) below powerplant at datum about 420 ft (128 m) lower. Sept. 6, 1914, to Aug. 4, 1953, powerplant record at Thomson hydroelectric plant.

REMARKS.--Records good. Diurnal fluctuation caused by powerplant upstream. Flow regulated by Whiteface Reservoir and Boulder, Island, Rice and Fish Lakes, combined capacity, 332,160 acre-ft (410 hm³); the water-discharge table shows the monthly change in contents (†).

AVERAGE DISCHARGE (UNADJUSTED).--74 years, 2,300 ft³/s (65.14 m³/s), 9.11 in/yr (231 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 37,900 ft³/s (1,070 m³/s) May 9, 1950; maximum gage height, 15.8 ft (4.816 m) May 9, 1950, from Minnesota Department of Transportation (discharge uncertain); minimum discharge, 54 ft³/s (1.53 m³/s) July 30, 1980; minimum daily, 88 ft³/s (2.49 m³/s) Aug. 24, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 26,700 ft 3 /s (756 m 3 /s) Apr. 18, gage height, 12.20 ft (3.719 m); minimum daily, 794 ft 3 /s (22.5 m 3 /s) Sept. 9.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN AUG MAR 1 2 1800 6060 Ŕ 1820 1210 794 1800 3680 22 1500 1 200 13200 8910 4480 1400 1400 2060 80.20 1250 ___ TOTAL MEAN 2770 794 MAX MIN -1025 +677 -456 -922 -1000 -1080 -2333 +1967 -37 +212 -356 +266 MEAN ‡ 1.31 .13 .12 3.23 3.27 CFSM ‡ .44 .14 .10 .44 1.48 •38 .58 1.51 .49 .13 3.78 .44 .65 CAL YR 1981 TOTAL WTR YR 1982 TOTAL 1199950 3288 MEAN # 2474 MEAN # 2956 CFSM # 0.72 CFSM # 0.86 MEAN MAX MIN 430 IN. # 9.79 IN. # 11.70

MAX

MIN 794

MEAN

[†] Change in contents, equivalent in cubic feet per second, in Whiteface Reservoir and Boulder, Island, Rice, and Fish Lakes; records furnished by Minnesota Power and Light Co.

[#] Adjusted for change in contents.

$04024000\,$ ST. LOUIS RIVER AT SCANLON, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

LOCATION .-- Samples collected at cableway 0.75 mi (1.21 km) downstream.

PERIOD OF RECORD. -- Water years 1958-66, 1968 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: October 1980 to September 1982 (discontinued). WATER TEMPERATURES: October 1980 to September 1982 (discontinued).

INSTRUMENTATION. -- Water-quality minimonitor since October 1980.

REMARKS.--Letter K indicates non-ideal colony count. No current extremes for specific conductance are given because more than 80 percent of the record is missing.

EXTREMES FOR PERIOD OF DAILY RECORD . --

SPECIFIC CONDUCTANCE: Maximum, 336 micromhos Aug. 14, 1981; minimum, 68 micromhos June 10, 1981. WATER TEMPERATURES: Maximum, 25.0°C July 12-14, 1981; minimum, 0.0°C several days during winter period.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURES: Maximum, 23.0°C July 6, Aug. 18, 19; minimum, 0.0°C several days during winter period.

			- '									
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
OCT 20	1515	6770	115	105	7.6	7.2	2.0	7.0	731	6.5	11.3	97
JAN 13	1530	1150	147	138		7.6	-13.0	.0	728	3.1	12.8	92
MAR 09	1445	1090	105	141	7.4	7 - 4	-20.0	.0	739	2.6	11.5	81
APR 20	1100	19700	75	68	7.2	7.0	3.0	2.0	733	20	13.4	101
JUN 21	1345	1640	160	143	7.9	7.8	23.0	18.0	736	2.1	9.0	99
AUG 09	1430	2130	145	133	7.4	7.4	15.0	20.0	729	4.5	7.6	88
									1			
	COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER	HARD- NESS (MG/L AS	HARD- NESS NONCAR- BONATE (MG/L AS	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L

	FORM.	TOCOCCI		NESS		MAGNE-		SODIUM	POTAS-	ALKA-		CHLO-
	FECAL,	FECAL,	HARD-	NESS NONCAR-	CALCIUM	SIUM.	SODIUM.	AD-	SIUM.	LINITY	SULFATE	RIDE.
	0.7	KF AGAR	NESS	BONATE	DIS-	DIS-	DIS-	SORP-	DIS-	LAB	DIS-	DIS-
	UM-MF	(COLS.	(MG/L	(MG/L	SOLVED	SOLVED	SOLVED	TION	SOLVED	(MG/L	SOLVED	SOLVED
	(COLS./	PER.	AS	AS	(MG/L	(MG/L	(MG/L	RATIO	(MG/L	AS	(MG/L	(MG/L
DATE	100 ML)	100 ML)	CACO3)	CACO3)	AS CA)	AS MG)	AS NA)	111110	AS K)	CACO3)	AS SO4)	AS CL)
21112	(31625)	(31673)	(00900)	(95902)	(00915)	(00925)	(00930)	(00931)	(00935)	(90410)	(00945)	(00940)
	(3)	(3==13)	())	()))())	(00)1)	(00)2)	(00)50/	(00)5-7	(,,,,,,,	(30,,	()	(0-),
OCT												
20	K170	1000	51	14	12	5.2	4.3	•3	1.2	37	8.9	4.2
JAN												
13	48	22	62	10	14	6.5	4.0	.2	•9	52	9.3	3.7
MAR												
09	K10	96	66	8.0	15	7.0	5.3	•3	1.0	58	11	3.8
APR												
20	94	K610	32	7.0	7.5	3.3	2.1	• 2	1.3	25	6.0	2.3
JUN												
21	42	56	61	6.0	14	6.4	4.3	• 2	1.1	55	10	4.0
AUG									_			
09	43	310	66	12	15	6.9	3•9	. 2	.6	54	9.0	3.5

04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT											
20	<.1	8.7	118	67	2160	.31	.040	•59	.050	<.010	<.010
JAN 13	.1	8.3	103	79	320	.24	.060	.65	.020	.010	.010
MAR			5	,,	324	•	••••	•••	•••	••••	
09 APR	.1	9.0	114	87	336	.36	.080	•63	.030	.020	.010
20	<.1	5.4	75	43	3990	.19	.110	•53	.140	.020	.010
JUN											
21 AUG	.1	5•7	111	79	492	<.10	<.010	•50	.030	.020	.020
09	.1	8.4	124	81	713	.25	.040	.90	.040	.030	•030

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 20 JAN	80	1460	48
13 MAR	13	40	95
09 APR	13	38	96
20	100	5320	88
JUN 21 AUG	29	128	54
09	37	213	92

DATE	TIME	ARSENIC TOTAL (UG/L AS AS) (01002)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) (01027)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO) (01037)
OCT 20 JAN	1515	1	0	100	49	<1	1	20	10	<1
13 APR	1530	1	0	100	19	1	<1	30	20	1
20 AUG	1100	1	1	<100	16	1	<1	20	10	2
09	1430	2	2	100	19	<1	<1	20	20	<1
D ATE	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)
OCT 20 JAN 13	DIS- SOLVED (UG/L AS CO)	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)
OCT 20 JAN	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	DIS- SOLVED (UG/L AS CU) (01040)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	DIS- SOLVED (UG/L AS FE) (01046)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	DIS- SOLVED (UG/L AS PB) (01049)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)

04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued

MERGURN TOTAL NICKEL, SILE SILVER,				WAL	וייונו עע	OHLI	II DA	тн,	MWITH	I IIIM	11 001	COLIN	1901	. 10	DUITE	11001	1 1 9 0 2	•			
20		re	DIS SOLV (UG, AS)	S- VED /L HG)	TOT REC ERA (UG AS	AL OV- BLE /L NI)	DIS SOL (UG AS	- VED /L NI)	NIU TOT (UG AS	JM, PAL S/L SE)	NIU DI SOU (UC AS	JM, IS- LVED I/L SE)	TOT REC ERA (UG AS	AL OV- BLE /L AG)	DI SOL (UG AS	S- VED /L AG)	TOT REC ERA (UG AS	TAL COV- ABLE J/L ZN)	DI SOL (UG AS	S- VED /L ZN)	
13 < 1				.2		2		2		<1		<1		<1		<1		40		17	
MAPRIL MARRI MAPRIL MARRI MAPRIL MARRI	JAN					4								<1		<1		70			
AND O9 <.1 6 2 <1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						9		5		<1		<1		<1		<1		20			
NAPH-	AUG			<.1						<1		<1		<1		<1		40			
Date PCB						T LE	HA- NES,			сн	ilor-							Γ)I <i>-</i>	DI-	
09 1445		TI	ME	TO'l	ral /L)	CH TO (UG	LOR. TAL /L)	TO (U	TAL G/L)	DA TO (UG	NE, TAL (/L)	TO (U	TAĹ G/L)	OT U)	TAL G/L)	OT (U	TAL G/L)	AZI TC U)	NON, TAL IG/L)	ELDRI TOTAL (UG/L	
20 1100 <.10 <.10 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	09	14	45	<	(.10		<.10		<.01		<.10		<.01		<.01		<.01		.01	<.0	1
SENDO-		11	00	<	<.10		<.10		<.01		<.10		<.01		<.01		<.01			<.0	1
OPT Coll C	DATE	SULF TOT (UG	AN, AL /L)	TOT (U)	TAL 3/L)	TO (U	TAL G/L)	CH TO (U	LOR, TAL G/L)	CH EPO TO (U	LOR XIDE TAL IG/L)	OT U)	TAL G/L)	TH TO (U	ION, TAL IG/L)	0 CH TO U)	XY- ILOR, TAL IG/L)	PA TH TC (U	RA- IION, TAL IG/L)	TRI- THION TOTAL (UG/L	I,
A	09	<	.01		<.01		<.01		<.01		<.01		<.01		<.01		<.01		<.01	<.0) 1
MIREX		<	.01	<	<.01				<.01		<.01		<.01				<.01			-	
09 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <	TAC		TOI (UG)	CAĹ /L)	THI TOT (UG	ON, AL /L)	THA TOT (UG	NE AL /L)	APHE TOT (UG	ENE, PAL P/L)	THI THI (UC	RI- ION H/L)	TOT (UG	AL /L)	TOT (UG/	AL L)	TOT (UC	'AL 3/L)	TOT (UG	AL /L)	
APR 20 <.01			۲.	.01	<	-01	<	.01		<0		(.01	-	.01	-	.01	<	(.01		-01	
PCB, PCN, ALDRIN, DANE, DDD, DDE, DDT, ELDRIN, TOTAL TERIAL TERIA	APR				`								`								
PCB, TOTAL TERIAL TOTAL TO	20.	•	``	.01			`	•10		/1				•02		•01	Ì	01	`	•01	
OCT 20 1515 3 <1.0 <.1 <1.0 <.1 <.1 <.1 <.1 <.1 <.1 APR 20 1100 24 <1.0 <.1 <1.0 .2 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	DAT	TE.	TIN	1E	TOT IN BO TOM TER (UG/	AL OT- MA- IAL KG)	TOT IN B TOM TER (UG/	AL OT- MA- IAL KG)	TOT IN B TOM TER (UG/	CAL BOT- MA- RIAL (KG)	DAN TOT IN E TOM TEF (UG/	IE, TAL BOT- MA- RIAL (KG)	TOT IN B TOM TER (UG/	AL OT- MA- IAL KG)	TOT IN B TOM TER (UG/	AL OT- MA- IAL KG)	TOT IN E TOM TER (UG/	PAL BOT- MA- RIAL 'KG)	ELDR TOT IN B TOM TER (UG/	IN, OT- MA- IAL KG)	
APR 20 1100 24 <1.0 <.1 <1.0 .2 <.1 <.1 <.1 ENDO- SULFAN, ENDRIN, CHLOR, CHLOR LINDANE OXY- TOTAL TOTAL TOTAL EPOXIDE TOTAL OTT. IN IN BOT- IN BOT- IN BOT- TOM MA- TOM MA- TOM MA- TERIAL TERIAL TERIAL MATL. TERIAL TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (39389) (39393) (39413) (39423) (39343) (39481) (39758) (81886) (39403) OCT 20 <1 <1 <1 <.1 <.1 <.1 <.1 <.1 <.1 <.1											,,,,	,			,						
ENDO- SULFAN, ENDRIN, CHLOR, CHLOR LINDANE OXY- TOTAL TOTAL TOTAL EPOXIDE TOTAL CHLOR, TOTAL THANE TOTAL IN BOT- TOM MA- TOM MA- TERIAL TERIAL TERIAL MATL. TERIAL MATL. TERIAL MATEL TERIAL DATE (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (UG/KG) (39389) (39393) (39413) (39423) (39343) (39481) (39758) (81886) (39403) OCT 20 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	APR																				
SULFAN, ENDRIN, CHLOR, CHLOR LINDANE OXY- MIREX, PER- PHENE, TOTAL TOTAL TOTAL EPOXIDE TOTAL CHLOR, TOTAL THANE TOTAL IN BOT- IN BOT- TOT. IN IN BOT- TOT. IN IN BOT- IN BOT- TOT. IN IN BOT- TOM MA- BOTTOM TOM MA- BOT	20.	• • •				24					<	(1.0				<.1		<.1			
20 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	DAT	'E	SULFA TOTA IN BO TOM N TERI (UG/K	AN, AL OT- MA- EAL (G)	TOT. IN BOTOM ITEM TER (UG/I	AL OT- MA- IAL KG)	TOT IN B TOM TER	OR, AL OT- MA- IAL KG)	CHL EPOX TOT. BOT MA (UG/	OR IDE IN TOM (TL. (KG)	TOT IN E TOM TEF (UG/	AL BOT- MA- RIAL KG)	OXY CHL TOT. BOT MA (UG/	OR, IN TOM TL.	TOT IN B TOM TER (UG/	AL OT- MA- IAL KG)	THAN IN BOTT MATE (UG/	EOM CRIL (KG)	PHE TOT IN B TOM TER (UG/	NE, AL OT- MA- LIAL KG)	
APR				< . 1		<.1		<.1		<.1		<.1		<.1		<.1	((.10		1.0	
	APR																				

04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	DID	01110 00		((III ONO III O D)	ON AL Z) DOG . 0)	,	001000			-,	
DAY	MAX	MIN	MEAN	XAM	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
										. = 6		
1	175 170	152 158	158 162	135 128	122	130 124	137 138	128 126	132 130	176 160	140 137	144 150
2 3 4	177	158 156	164	131	117 124	128	149	126	133	162	137 134	150 142
4	184 201	168	176	148 138	117 123	126	143	131 132	133 137	162 160	136 138	142 147
5	201	175	185	130		129	153		131	100	130	
6	193	177	182	137	128	132	141	133	137	154	128	134 138
7 8	197 191	182 163	190 181	141 141	136 135	139 138	140 141	134 137	137 139	145 142	134 140	141
9	166	156	161	138	134	136	159	137	143	144	134	140
10	159	153	158	141	133	136	144	139	141	152	134	141
11	159	144	154	138	137	137	146	142	144	149	137	141
12	146 153	142 144	145 147	153 149	137 138	140	150 159	146 146	148 149	162 159	139 142	148 145 146
13 14	145	132	140	144	139	141	151	149	150	149	142	146
15	155	123	134	148	143	146	150	149	150	152	149	151
16	153	119	131	158	133	144	169	148	155	157	150	152
17 18	147	120	128	157	134	140	162	145	152 158	160	156	158
18 19	133	121 111	126 125	158 148	143 138	150 145	160 161	155 150	158	162 202	156 162	172
19 20	139 128	114	121	145	138 142	144	176	148	155	164	153	152 158 159 172 156
21	137	122	132	143	140	142	171	153	156	154	150	
22	140	122	133	143	140	141	153	143	147	162	154	152 158 161
23 24	117 122	101 115	109	141 139	139 135	140	174 175	144	150 156	163 161	157 155	161
25	128	120	119 123	139	132	137 135	159	153 142	150	188	157	157 164
26								141	145	158	152	156
	126 124	122 120	124 122	135 136	133 132	134 134	151 163	146	151 146	153	153 146	149
27 28	124	119	122	138	132 127	131	151	144	146	148	145	149 146 149
29 30	126 134	122 121	124 126	134 130	127 127	130 129	169 174	147 145	153 155	169 163	145 142	149
31	133	124	128				185	137	151	147	145	147 146
MONTH	201	101	143	158	117	137	185	126	146	202	128	149
MOIVIII	201	101	143	1,0	111	131	10)	120	140	202	120	147
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX			MAX			MAX			MAX		MEAN
		FEBRUAR	Y	MAX	MARCH			MIN APRIL	ı	MAX	MIN MAY	MEAN
1	149	FEBRUAR	Y 144		MARCH			APRIL		MAX		MEAN
1 2	149 154 143	FEBRUAR 142 142 137	144 144 141		MARCH				ı	MAX		MEAN
1 2 3 4	149 154 143 143	FEBRUAR 142 142 137 141	144 144 141 142		MARCH			APRIL		мах		MEAN
1 2 3 4 5	149 154 143	FEBRUAR 142 142 137	144 144 141		MARCH			APRIL		MAX		MEAN
1 2 3 4 5	149 154 143 143 147	FEBRUAR 142 142 137 141 143	144 144 141 142		MARCH			APRIL		MAX		MEAN
1 2 3 4 5 6 7 8	149 154 143 143 147	FEBRUAR 142 142 137 141 143	144 144 141 142		MARCH			APRIL		MAX		MEAN
1 2 3 4 5 6 7 8 9	149 154 143 143 147	FEBRUAR 142 142 137 141 143	144 144 141 142 144 	 	MARCH		 	APRIL		MAX		MEAN
1 2 3 4 5 6 7 8	149 154 143 143 147	FEBRUAR 142 142 137 141 143	144 144 141 142 144 	 	MARCH		 	APRIL		MAX		MEAN
1 2 3 4 5 6 7 8 9 10	149 154 143 143 147	FEBRUAR 142 142 137 141 143	144 144 141 142 144 	 150	MARCH		 	APRIL		MAX		MEAN
1 2 3 4 5 6 7 8 9 10	149 154 143 143 147	FEBRUAR 142 142 137 141 143	144 144 141 142 144 	 150	MARCH	 127	 	APRIL		MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14	149 154 143 143 147	FEBRUAR 142 142 137 141 143	144 144 141 142 144 	 150 131 132 126	MARCH	 127 127 123 123	 	APRIL		MAX		MEAN
1 2 3 4 5 6 7 8 9 10	149 154 143 143 147	FEBRUAR 142 142 147 141 143	144 144 141 142 144 	 150 131 132	MARCH	127 127 123	 	APRIL		MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	149 154 143 143 147	FEBRUAR 142 142 137 141 143	144 144 141 142 144 	150 131 132 126 125	MARCH	127 123 123 119		APRIL		MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	149 154 143 143 147	FEBRUAR 142 147 141 143	144 144 141 142 144 	150 131 132 126 125	MARCH	 127 127 123 123 119	 110	APRIL		MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	149 154 143 143 147	FEBRUAR 142 142 147 141 143	144 144 141 142 144 	150 131 132 126 125	MARCH	127 123 123 119	 110 79 71	APRIL	 95 69 70	MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	149 154 143 143 147	FEBRUAR 142 147 141 143	144 144 141 142 144 	150 131 132 126 125	MARCH 116 118 118 120 110 110 117	127 127 123 123 119 113 115 120	 110	APRIL		MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	149 154 143 143 147	FEBRUAR 142 142 147 141 143	144 144 141 142 144 	150 131 132 125 125 125 125	MARCH 116 118 118 120 110 110 112 117 118 123	127 127 123 123 119 113 115 120 121 124	 110 79 71 81	APRIL 72 57 69 74	 95 69 70 76	MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	149 154 143 143 147	FEBRUAR 142 142 147 141 143	144 144 141 142 144 	150 131 132 126 125 127 128 129 129	MARCH 116 118 118 120 110 112 117 118 123 123	127 127 123 123 119 113 115 120 121 124	 110 79 71 81 84	APRIL	95 69 76 81	MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	149 154 143 143 147	FEBRUAR 142 142 143 141 143	144 144 141 142 144 	150 131 132 125 125 125 125	MARCH 116 118 118 120 110 110 112 117 118 123	127 127 123 123 119 113 115 120 121 124	 110 79 71 81	APRIL 72 57 69 74	 95 69 70 76 81 80 84 94	MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	149 154 143 143 147	FEBRUAR 142 147 141 143	144 144 141 142 144 	150 131 132 126 125 127 128 129 125 125 125 125	MARCH 116 118 118 120 110 112 117 118 123 123 120 121	127 127 127 123 119 113 115 120 121 124	 110 79 71 81 84 82 90	APRIL	 	MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24	149 154 143 143 147	FEBRUAR 142 142 143 141 143	144 144 141 142 144 	150 131 132 125 125 125 125 125 127	MARCH 116 118 118 120 110 110 112 117 118 123 123 121 117	127 127 123 123 123 119 113 120 121 124 124 124 124 125	 110 79 71 81 84 82 90 97	APRIL	 95 69 70 76 81 80 84 94	MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 19 20 21 22 32 24 25 26 27	149 154 143 143 147	FEBRUAR 142 142 143 141 143	144 144 141 142 144 	150 131 132 125 125 125 125 125 125 125 126 147 126	MARCH 116 118 118 120 110 110 1117 118 123 123 123 121 117 123	127 127 127 123 123 129 113 120 121 124 124 124 124 125	 110 79 71 81 84 82 90 97	APRIL 72 57 69 74 79 78 82 91 96	 95 69 70 76 81 80 84 98	MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 33 4 25 26 27 28	149 154 143 143 147	FEBRUAR 142 147 141 143	144 144 141 142 144 	150 131 132 126 125 127 127 128 128 128 128	MARCH 116 118 118 120 110 110 112 117 118 123 123 121 117 123	127 127 127 123 123 119 113 115 120 121 124 124 124 124 125 126 125	 110 79 71 81 84 82 90 97 100	APRIL	 	MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 25 26 27 28 29 30	149 154 143 143 147	FEBRUAR 142 142 143 141 143	144 144 141 142 144 	150 131 132 125 125 125 125 125 125 126 147 126 128 128 130 132 132 136	MARCH 116 118 118 120 110 110 110 117 118 123 123 120 121 117 123	127 127 127 123 123 119 113 115 120 121 124 124 124 124 125 126 125	 110 79 71 81 84 82 90 97 100	APRIL	 95 69 70 76 81 80 84 98 99	MAX		MEAN
1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 17 18 19 20 21 223 24 25 26 27 28 29	149 154 143 143 147	FEBRUAR 142 142 143 141 143	144 144 141 142 144 	 150 131 132 126 125 125 125 125 125 126 147 126 128 128 128 128 128 128	MARCH 116 118 118 120 110 110 112 117 118 123 123 121 117 123	127 127 127 123 123 119 113 115 120 121 124 124 124 124 125 126 125	 110 79 71 81 84 82 90 97 100	APRIL	 95 69 70 76 81 80 84 98 99	MAX		MEAN

MONTH

04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAI	MAX		MEAN	MAA		MEAN	MAA			MAA		
		JUNE			JULY			AUGUST			SEPTEMB	ER
1 2 3 4										144 140 137 138	134 137 134 134	138 138 136 136
5										148	135	142
6 7 8 9							 143	134	 138	153 136 138 142 141	137 130 131 131 131	146 133 134 138 135
11 12 13 14 15							148 148 146 139 135	142 145 139 131 130	145 147 142 136 132	156 156 145 143 158	141 144 134 134 144	149 152 137 136 151
16 17 18 19 20							137 144 152 152 147	133 136 143 146 134	135 140 148 149 142	167 167 168 153 149	158 162 153 143 144	164 164 163 147 146
21 22 23 24 25							135 132 135 136 137	130 129 132 133 134	133 130 134 134 135	150 144 145 145 146	143 142 141 141 140	145 143 143 143 143
26 27 28 29 30 31							146 151 145 144 142 140	134 139 137 139 140 137	138 143 140 141 141 139	150 152 152 155 157	145 148 148 152 151	148 149 150 153 154
MONTH			•							168	130	145
		m	IEMDED AMIIDE	MAMER / DE	aa a)	MARGO VOA	B OGMODER 1	001 mo (ie nasamores :	.002		

TEMPERATURE, WATE	R (DEG. C	3),	WATER	YEAR	OCTOBER	1981	TO	SEPTEMBER	198	32
-------------------	-----------	-----	-------	------	---------	------	----	-----------	-----	----

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	CR		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	10.5 9.5 9.0 8.5 8.5	9.0 8.5 8.0 8.0	9.5 9.0 8.5 8.5	5.0 5.5 5.5 5.5	4.5 4.5 5.0 5.0	5.0 5.0 5.0 5.5 5.5	.5 .0 .5 .5	.0 .0 .0	.0 .0 .5 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0
6 7 8 9 10	9.0 8.5 8.5 8.5 8.5	8.5 8.0 8.0 8.0	8.5 8.5 8.5 8.5	5.5 5.0 4.5 4.0 3.0	5.0 4.5 4.0 3.0 2.5	5.0 4.5 4.5 3.5 2.5	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0
11 12 13 14 15	8.5 9.0 9.5 10.0	8.5 8.5 9.0 9.5 9.5	8.5 9.0 9.0 9.5 10.0	2.5 2.5 3.0 3.5 3.5	2.0 2.0 2.5 3.0 3.0	2.0 2.5 2.5 3.0 3.5	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0
16 17 18 19 20	10.0 10.0 9.5 7.5 7.0	9.5 9.5 7.5 7.0 6.0	9.5 9.5 8.5 7.0 6.5	4.0 4.5 4.5 4.0 3.0	3.5 4.0 4.0 3.0 1.5	4.0 4.5 4.0 3.5 2.5	.0 .0 .5 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0
21 22 23 24 25	6.0 5.5 4.0 3.0 2.0	5.5 4.0 3.0 2.0 1.5	5.5 4.5 3.5 2.5 2.0	1.5 .5 .5 .5	•5 •5 •0	1.0 •5 •5 •0	.0 .0 .0	.0 .0 .0	• 0 • 0 • 0 • 0	.0 .0 .0	.0 .0 .0	.0 .0 .0
26 27 28 29 30 31	1.5 2.0 2.5 3.0 4.5 5.5	1.0 1.0 2.0 2.0 3.0 4.5	1.5 1.5 2.0 2.5 3.5	.0 .0 .0	.0	.0 .0 .0	.0 .0 .0 .0	.0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0	.0 .0 .0
MONTH	10.5	1.0	6.5	5.5	.0	2.5	•5	•0	.0	.0	•0	.0

04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	XAM	NIN	MEAN	MAX	MIN	MEAN	!	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH				APRIL			MAY	
1 2 3 4 5	.0 .0 .0	.0 .0 .0	.0 .0 .0					.0 .0 .0	.0 .0 .0	.0 .0 .0			
6 7 8 9	.0	.0	.0	.0	.0	.0		.0	.0 .0 .0	.0 .0 .0			
10 11 12 13 14 15				.0 .0 .0 .0	.0 .0 .0 .0	.0		.0	.0	.0 .0 .0			
16 17 18 19 20				.0 .0 .0	.0	.0		.5 1.0 .5 1.5 2.5	.0 .0 .0 .5	.0 .5 .5 1.0 2.0			
21 22 23 24 25				.0 .0 .0	.0 .0 .0	.0 .0 .0		3.5 4.5 6.5 8.5 0.0	2.0 2.5 4.0 6.5 8.5	2.5 3.5 5.0 7.0 9.0			
26 27 28 29 30 31	 			.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0		0.5	9.5	10.0			
DAY	MAX	MIN JUNE	MEAN	MAX	MIN	MEAN	1	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEM	MEAN BER
	MAX	MIN JUNE	MEAN		JULY				AUGUST			SEPTEM	BER
DAY 1 2 3 4 5	MAX	JUNE	MEAN	MAX 21.0 21.5 21.0 20.5 22.0		MEAN 20.5 21.0 21.0 20.5 20.5	2 2 1 1	MAX 1.0 0.0 8.5 8.5 9.5			MAX 17.5 17.5 17.5 18.0 18.0		
1 2 3 4	MAX	JUNE 		21.0 21.5 21.0 20.5	JULY 19.5 20.5 20.5 20.5	20.5 21.0 21.0 20.5	2 2 1 1 1 1 1 2 2	1.0 0.0 8.5 8.5	AUGUST 20.0 18.0 17.0 15.5	20.5 19.0 18.0 17.5	17.5 17.5 17.5 18.0	SEPTEMP 16.5 17.0 16.5 17.0	17.0 17.0
1 2 3 4 5 6 7 8 9		JUNE		21.0 21.5 21.0 20.5 22.0 23.0 22.5 20.5 20.5	JULY 19.5 20.5 20.5 20.5 20.0 22.0 20.5 20.0 18.5	20.5 21.0 21.0 20.5 20.5 21.5 20.5 19.5	2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0 0.0 8.5 8.5 9.5 9.0	AUGUST 20.0 18.0 17.0 15.5 16.5 16.0 16.5 17.0 18.0	20.5 19.0 18.0 17.5 18.0 17.0 17.5 18.5 20.0	17.5 17.5 17.5 18.0 18.0 17.5 17.5	SEPTEMI 16.5 17.0 16.5 17.0 17.5 17.0 17.0 17.0 17.0	17.0 17.0 17.0 17.5 17.5 17.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14		JUNE		21.0 21.5 21.0 20.5 22.0 23.0 22.5 20.5 20.5 18.5 19.5 20.5	JULY 19.5 20.5 20.5 20.5 20.0 22.0 20.5 20.0 18.5 17.5 18.0 18.5 19.5	20.5 21.0 21.0 20.5 20.5 20.5 21.5 20.5 19.5 18.0 18.0 18.0 18.5	2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0 0.0 8.5 5.5 9.0 5.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	AUGUST 20.0 18.0 17.0 15.5 16.5 16.0 18.0 19.5 19.0 19.5 19.5	20.5 19.0 18.0 17.5 18.0 17.5 18.5 20.0 19.5 20.0 20.0	17.5 17.5 17.5 18.0 18.0 18.0 17.5 17.5 17.5 19.0 19.0 19.5 19.5 19.0	SEPTEMI 16.5 17.0 16.5 17.0 17.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 16.0	17.0 17.0 17.0 17.5 17.5 17.5 17.5 17.5 17.5 17.0 17.5 17.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8		JUNE		21.0 21.5 21.0 20.5 20.5 22.0 23.0 22.5 20.5 20.5 20.5 20.5 20.5 20.5 20	JULY 19.5 20.5 20.5 20.0 22.0 22.0 20.5 20.0 18.5 17.5 17.5 18.5 19.5 20.0 19.5 20.5	20.5 21.0 21.0 20.5 20.5 20.5 21.5 20.5 19.5 18.0 18.5 19.0 20.0 20.0 21.0 22.0 21.5	2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	100.5555 05.500 050055 5500	AUGUST 20.0 18.0 17.0 15.5 16.5 16.0 18.0 19.5 19.0 19.5 19.0 21.0 21.0 22.0 22.0	20.5 19.0 18.0 17.5 18.0 17.5 18.5 20.0 19.5 20.0 20.0 20.0 20.5 21.5 22.5 22.5	17.5 17.5 18.0 18.0 17.5 17.5 18.0 19.5 19.0 19.5 19.0 14.0 13.5 13.5	SEPTEMI 16.5 17.0 16.5 17.0 17.5 17.0 17.0 17.0 17.0 17.5 18.0 19.0 16.0 14.5 13.5 13.5 13.5 13.5	17.0 17.0 17.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5
1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 19 20 21 22 32 4 25 26 27 28 29 30	18.5 18.5 18.5 19.0 19.5 20.0 20.5 21.0	JUNE 17.0 17.5 18.0 18.0 18.5 19.5 19.5	18.0 18.0 18.0 18.5 19.0 20.0 20.0	21.0 21.5 21.0 20.5 22.0 23.0 22.5 20.5 20.5 18.5 19.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	JULY 19.5 20.5 20.5 20.0 22.0 22.0 20.5 20.0 18.5 17.5 17.5 18.0 18.5 19.5 20.0 21.5 20.5 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	20.5 21.0 20.5 20.5 20.5 22.5 22.5 20.5 18.0 18.0 20.0 20.0 20.0 21.5 20.5 21.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	108889 99010 000000 123322 211111 098877	AUGUST 20.0 18.0 17.0 16.5 16.5 16.0 18.0 19.5 19.0 19.5 19.0 21.5 22.0 21.5 22.0 21.0 22.0 21.7 20.0	20.5 19.0 18.0 17.5 18.0 17.5 18.5 20.0 20.0 20.0 20.0 20.5 21.5 22.5 22.5 22.5 22.5 21.0 20.5 21.5 21.0 20.5	17.5 17.5 18.0 18.0 18.0 19.5 118.0 19.5 118.0 19.5 118.0 19.5 119	SEPTEMI 16.5 17.0 16.5 17.0 17.5 17.0 17.0 17.0 17.5 18.0 16.0 14.5 13.5 13.5 13.0 12.5 12.0 12.0 12.0 12.0 12.0 12.0 12.5	17.0 17.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 18.5 17.0 17.0 17.5 18.5 17.0 13.5 13.5 13.5 13.0 12.5 13.0 12.5 13.0
1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 17 8 19 20 21 22 32 4 25 26 27	18.5 18.5 18.5 19.0 19.5 20.0 20.5	JUNE 17.0 17.5 17.5 18.0 18.0 18.0 18.5 19.5	18.0 18.0 18.0 18.0 18.5 19.0 20.0	21.0 21.5 21.0 20.5 22.0 23.0 22.5 20.5 18.5 19.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	JULY 19.5 20.5 20.5 20.0 22.0 20.5 20.0 18.5 17.5 18.0 18.5 19.5 20.0 21.5 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	20.5 21.0 20.5 20.5 20.5 22.5 21.5 20.5 18.0 18.5 19.0 20.0 20.0 21.0 22.0 22.0 22.0 22.0 22	2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	108889 99010 000000 123332 211111 09887	AUGUST 20.0 18.0 17.0 15.5 16.5 16.0 16.5 17.0 19.0 19.5 20.0 21.5 22.0 22.0 21.5 21.0 20.5 20.0 19.0 18.0 17.5	20.5 19.0 18.0 17.5 18.0 17.5 18.5 20.0 20.0 20.0 20.5 21.5 22.5 22.0 21.5 21.0 20.5 21.5 21.0 21.5 21.0 21.5 21.0 21.5	17.5 17.5 18.0 18.0 18.0 19.5 19.0 19.5 19.0 19.5 113.	SEPTEMI 16.5 17.0 16.5 17.0 17.5 17.0 17.0 17.0 17.5 18.0 19.0 14.5 13.5 13.5 13.0 13.0 12.5 12.0 12.0 12.0 12.0 12.0	17.0 17.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5

04024098 DEER CREEK NEAR HOLYOKE, MN

LOCATION.--Lat 46°31'30", long 92°23'20", in NE4SE4 sec.29, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, on left bank 179 ft (54.6 m) west of State Highway No. 23, 0.9 mi (1.4 km) upstream from mouth and 4.0 mi (6.4 km) north of Holyoke.

DRAINAGE AREA .-- 7.77 mi² (20.1 km²).

PERIOD OF RECORD. -- October 1976 to current year.

GAGE.--Water-stage recorder. Datum of gage is 736.14 ft (239.615 m) National Geodetic Vertical Datum of 1929.

REMARKS .-- Records good except those for winter periods, which are fair.

AVERAGE DISCHARGE.--6 years, 6.07 ft^3/s (0.172 m^3/s), 10.61 in/yr (269 mm/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 383 ft 3 /s (10.8 m 3 /s) May 10, 1979, gage height, 17.11 ft (5.215 m), from rating curve extended above 104 ft 3 /s (2.95 m 3 /s); minimum discharge, 0.20 ft 3 /s (0.006 m 3 /s) Aug. 13, 16, 1982.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 204 ft 3 /s (5.78 m 3 /s) July 7, gage height, 15.45 ft (4.709 m) from rating curve extended above 142 ft 3 /s (4.02 m 3 /s); maximum gage height, 16.07 ft (4.898 m) Mar. 31; minimum discharge, 0.20 ft 3 /s (0.006 m 3 /s) Aug. 13, 16; minimum gage height, 11.31 ft (3.447 m) Dec. 5, 9.

		DISCHAR	GE, IN CU	BIC FEET	PER SECON	D, WATER MEAN VALU	YEAR OCTO	OBER 1981	TO SEPTE	MBER 1982		
DAY	OCT	VOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	12 5.6 3.3 42 13	4.7 4.5 4.5 4.4 4.3	2.1 2.1 2.1 2.0 2.0	2.0 2.0 2.0 2.0	1.6 1.6 1.6 1.6	2.9 3.0 3.0 3.0 3.1	80 33 33 24 14	4.5 5.5 25 50 93	3.1 3.9 2.4 3.3 2.3	.51 .50 1.6 .93 .63	.76 .67 1.1 .81 .76	1.3 .90 .58 .57 7.3
6 7 8 9 10	9.6 4.6 2.3 1.6 9.2	4.1 3.9 3.9 3.3 3.5	2.0 1.9 1.9 1.7	1.9 1.9 1.8 1.8	1.6 1.6 1.6 1.6	3.1 3.2 3.3 3.4 3.5	11 7.6 9.0 12	33 19 12 8.7 13	2.4 2.2 1.8 2.9 4.7	15 83 13 7.8 23	•57 •60 •55 •56 •46	2.8 1.1 .89 .85 5.7
11 12 13 14 15	5.7 3.2 13 62 21	3.5 3.6 3.6 3.7	2.0 2.1 2.1 2.2 2.2	1.8 1.8 1.7 1.7	1.6 1.7 1.7 1.8 1.9	3.5 3.7 10 3.6 3.3	15 51 76 87 100	14 11 52 35 30	2.7 1.8 1.5 1.2	21 7.6 4.3 3.9 3.9	.40 .42 .39 .52 .62	4.3 13 23 6.1 21
16 17 18 19 20	12 58 40 17 13	3.9 3.7 3.6 2.7 2.5	2.3 2.3 2.3 2.3 2.3	1.7 1.7 1.7 1.7	2.1 2.3 2.4 2.5 2.6	3.1 3.0 3.0 3.0 3.0	103 66 38 34 22	46 51 83 36 22	.97 .90 .75 .69 .92	9.4 5.5 2.8 1.4 1.4	.47 .47 .83 9.5	14 10 6.8 3.6 2.2
21 22 23 24 25	10 8.4 7.3 6.7 6.7	2.2 2.2 2.0 2.1 2.1	2.3 2.3 2.2 2.2 2.2	1.7 1.7 1.7 1.7	2.7 2.7 2.8 2.8 2.8	3.1 3.3 5.0 4.1 3.3	16 15 14 13	15 12 9.8 8.4 7.6	.90 .87 .75 .73	1.3 1.4 .90 1.0	.60 .66 .58 .61	1.6 1.2 1.1 1.1
26 27 28 29 30 31	6.3 6.5 6.1 5.9 5.8	2.1 2.1 2.1 2.1 2.1	2.2 2.2 2.1 2.1 2.1 2.1	1.7 1.7 1.7 1.7 1.6 1.6	2.9 2.9 2.9 	3.2 3.1 3.8 10 53	8.6 7.1 6.1 5.3 4.7	6.6 5.8 4.9 4.3 4.0 3.3	.61 .60 .60 1.5 .63	.79 .66 .52 1.6 1.8	.44 .48 .50 .50 .45	1.0 .94 1.0 1.3 4.9
TOTAL MEAN MAX MIN CFSM IN.	423.1 13.6 62 1.6 1.75 2.03	96.6 3.22 4.7 2.0 .41 .46	65.8 2.12 2.3 1.7 .27	55.0 1.77 2.0 1.6 .23 .26	59.1 2.11 2.9 1.6 .27	262.6 8.47 100 2.9 1.09 1.26	926.4 30.9 103 4.7 3.98 4.43	725.4 23.4 93 3.3 3.01 3.47	49.47 1.65 4.7 .60 .21	219.13 7.07 83 .50 .91 1.05	27.45 .89 9.5 .39 .12	141.23 4.71 23 .57 .61

CAL YR 1981 TOTAL 2654.30 MEAN 7.27 MAX 151 MIN 1.1 CFSM .94 IN 12.71 WTR YR 1982 TOTAL 3051.28 MEAN 8.36 MAX 103 MIN .39 CFSM 1.08 IN 14.61

05045950 ORWELL LAKE NEAR FERGUS FALLS, MN

LOCATION.--Lat 46°12'55", long 96°10'40", in SWł sec.26, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, at dam on Otter Tail River at outlet of Orwell Lake, 7 mi (11 km) southwest of Fergus Falls.

DRAINAGE AREA.--1,830 mi² (4,740 km²), approximately.

PERIOD OF RECORD .-- March 1953 to current year. Prior to October 1971, published as Orwell Reservoir.

GAGE .-- Water-stage recorder. Datum of gage is adjustment of 1912.

REMARKS.--Reservoir is formed by earth dam with concrete spillway with one taintor gate; storage began in March 1953. Capacity to elevation 1,070 ft (326 m) (maximum operating stage) is 14,100 acre-ft (17.4 hm³) of which 13,100 acre-ft (16.2 hm³) is controlled storage above elevation 1,048 ft (319 m) (minimum operating stage). Dead storage, 210 acre-ft (0.259 hm³). Figures given herein represent total contents. Reservoir is used for flood control and to increase low flow for water supply and pollution abatement.

COOPERATION. -- Records furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 16,920 acre-ft (20.9 hm³) June 17, 1962, May 23, 1966, elevation, 1,072.38 ft (326.861 m); minimum (after initial filling), 844 acre-ft (1.04 hm³) Aug. 26, 27, 1953, elevation, 1,046.96 ft (319.113 m).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 14,280 acre-ft (17.6 hm³) Sept. 30, elevation, 1,070.16 ft (326.185 m); minimum, 1,930 acre-ft (2.38 hm³) Mar 12, elevation, 1,051.61 ft (320.531 m).

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. Oct. Nov. Dec.	30	1068.64 1068.13 1064.78 1061.46	12640 12130 9220 6720	-510 -2910 -2500
CAL	YR 1981			- 511
Jan. Feb. Mar. Apr. May June July Aug. Sept.	31. 28. 31. 30. 31. 30. 31. 31. 31. 31. 31. 31. 31. 31	1055.37 1054.36 1055.60 1056.28 1055.51 1054.28 1057.71 1065.53 1070.16	3370 2940 3470 3780 3430 2910 4460 9820 14280	-3350 -430 +530 +310 -350 -520 +1550 +5360 +4460
WTR	YR 1982			+1640

05046000 OTTER TAIL RIVER BELOW ORWELL DAM, NEAR FERGUS FALLS, MN

LOCATION.--Lat 46°12'35", long 96°11'05", in NE% sec.34, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, on left bank 0.7 mi (1.1 km) downstream from Orwell Dam, 6.1 mi (9.8 km) downstream from Dayton Hollow Dam, 8 mi (13 km) southwest of Fergus Falls, and 11.1 mi (17.9 km) downstream from Pelican River.

DRAINAGE AREA.--1,830 mi² (4,740 km²), approximately.

PERIOD OF RECORD. --October 1930 to current year. Prior to October 1952, published as Otter Tail River below Pelican River, near Fergus Falls. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 785: 1934(M). WSP 1208: 1947(M). WSP 1308: 1931(M).

GAGE.--Water-stage recorder. Datum of gage is 1,029.65 ft (313.837 m), adjustment of 1912 (levels by Corps of Engineers). Oct. 11, 1930, to Nov. 17, 1933, at same site at datum 2.00 ft (0.61 m) higher; Nov. 18, 1933, to Mar. 21, 1953, at site 6.1 mi (9.8 km) upstream at datum 40.30 ft (12.283 m) higher.

REMARKS.--Records good. Flow regulated by Orwell Lake (station 05045950) beginning Mar. 21, 1953 and powerplants upstream.

AVERAGE DISCHARGE.--52 years, 303 ft^3/s (8.581 m^3/s), 219,500 acre-ft/yr (271 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,710 ft³/s (48.4 m³/s) June 17, 1953, gage height, 5.60 ft (1.707 m) backwater from aquatic vegetation; minimum, 0.70 ft³/s (0.020 m³/s) Aug. 5, 1970, gage height, 1.28 ft (0.390 m), result of regulation.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 849 ft 3 /s (24.0 m 3 /s) part of each day May 29-31, gage height, 3.71 ft (1.131 m) result of regulation; maximum gage height, 3.97 ft(1.210 m) Jan. 10 (backwater from ice); minimum, 23 ft 3 /s(0.65 m 3 /s) Apr. 2, gage height, 1.77 ft (0.539 m) result of regulation.

DIGGUARDE IN QUELO DED DED CROONE MARER VEAR COMORED 1001 MG GERMENDER 1000

		DISCHARGE	, IN C	JBIC FEET	PER SECON	D, WATER MEAN VALU	YEAR OCTO ES	BER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	55	194	235	233	205	329	396	582	841	627	399	235
2	54	193	248	231	205	345	163	581	835	622	355	240
3	55	192	256	231	205	353	63	581	827	614	360	224
4	56	191	256	230	205	351	222	585	768	607	393	210
5	64	198	256	251	214	351	411	611	740	603	363	210
6	69	198	256	270	235	347	514	624	753	573	372	210
7	72	196	254	265	235	347	591	677	766	541	396	210
8	71	197	251	266	235	342	635	698	815	544	395	210
9	92	197	254	270	235	337	692	692	836	521	382	210
10	110	201	251	270	235	332	722	692	822	556	377	196
11	113	201	251	260	235	328	709	685	812	558	358	182
12	114	201	251	255	235	326	699	738	806	556	390	182
13	113	217	251	250	235	331	693	762	798	566	176	182
14	150	240	251	245	235	336	686	755	772	575	33	178
15	182	240	251	245	235	345	683	753	785	570	32	178
16	182	240	251	245	240	418	765	747	729	523	33	173
17	182	240	251	245	245	479	815	782	696	502	35	141
18	182	240	251	240	246	478	800	827	698	502	169	126
19	178	240	247	235	258	473	785	836	694	462	322	130
20	182	240	245	235	278	471	772	831	679	445	322	130
21	182	240	244	230	277	473	750	825	615	451	323	130
22	183	240	243	230	283	468	737	827	627	432	320	130
23	182	240	243	230	310	465	722	820	620	421	292	129
24	187	240	240	230	335	463	705	820	607	424	272	127
25	187	235	240	230	332	457	689	825	612	429	272	133
26 27 28 29 30 31	185 186 188 187 189 191	235 235 235 234 231	240 240 240 237 235 235	230 230 230 210 205 205	328 327 326 	457 452 456 464 494 538	619 570 585 590 587	829 836 841 845 846 846	606 607 614 599 614	409 395 397 400 384 397	273 240 230 230 230 235	133 147 157 157 158
TOTAL MEAN MAX MIN AC-FT	4323 139 191 54 8570	221 240 191	7654 247 256 235 5180	7432 240 270 205 14740	7169 256 335 205 14220	12606 407 538 326 25000	18370 612 815 63 36440	23199 748 846 581 46020	21593 720 841 599 42830	15606 503 627 384 30950	8579 277 399 32 17020	5158 172 240 126 10230

CAL YR 1981 TOTAL 58186 MEAN 159 MAX 267 MIN 42 AC-FT 115400 WTR YR 1982 TOTAL 138310 MEAN 379 MAX 846 MIN 32 AC-FT 274300

05050000 BOIS DE SIOUX RIVER NEAR WHITE ROCK, SD

LOCATION.--Lat 45°51'45", long 96°34'25", in SW&SW& sec.27, T.128 N., R.47 W., Roberts County, Hydrologic Unit 09020101, on Sisseton Indian Reservation, on left bank just downstream from Big Slough Outlet, 300 ft (91 m) downstream from White Rock Dam, 4 mi (6 km) south of White Rock, and 5 mi (8 km) northwest of Wheaton, MN.

DRAINAGE AREA.--1,160 mi² (3,004 km²), approximately.

PERIOD OF RECORD. -- October 1941 to current year.

GAGE.--Water-stage recorder. Datum of gage is 960.00 ft (292.608 m), adjustment of 1912 (levels by Corps of Engineers). Prior to Jan. 14, 1943, nonrecording gage at same site at datum 0.11 ft (0.03 m) lower. Jan. 15, 1943, to Sept. 30, 1963, water-stage recorder at same site at datum 0.11 ft (0.03 m) lower.

REMARKS.--Records fair. Flow regulated by Lake Traverse-Boise de Sioux Flood Control and Water Conservation project (available capacity for flood control, 137,000 acre-ft or 169 hm³).

AVERAGE DISCHARGE.--41 years, 76.8 ft 3 /s (2.175 m 3 /s), 55,640 acre-ft/yr (68.6 hm 3 /yr); median of yearly mean discharges, 50 ft 3 /s (1.42 m 3 /s), 36,200 acre-ft/yr (45 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,770 ft³/s (107 m³/s), occurred during period Apr. 19-21, 1969, gage height, 15.07 ft (4.593 m), from floodmark; no flow at times in most years.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 414 ft3/s (11.7 m3/s) Apr. 16, gage height, 8.25 ft (2.515 m); no flow on many days.

		DISCHARG	E, IN CU	BIC FEET	PER SECO	ND, WATER MEAN VALU	YEAR OCTO	BER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	55 60 78 59 42	140 115 90 74 58	74 30 .03 .00	.29 .29 .38 .38	.38 .40 .40 .42 .40	.04 .02 .00 .02
6 7 8 9	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	28 23 71 209 243	55 55 55 52 7 9	.00 .00 .00	.45 .85 3.6 4.2 2.1	.40 .35 .29 .27	.00 .00 .00
11 12 13 14 15	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.50 .80 1.5 2.0 2.5	205 190 212 283 346	116 97 96 95 97	.00 .00 .00 .28	1.6 19 58 47 6.6	.25 .21 .19 .19	.00 .03 .00 .04
16 17 18 19 20	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	3.0 3.0 3.0 3.0	340 250 249 285 321	102 118 159 160 163	.02 .08 .09 .08	16 1.8 .70 .55	.17 .17 .17 .21	.00 .10 .03 .09
21 22 23 24 25	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	3.0 3.0 3.5 3.5	315 310 308 304 308	143 121 121 122 122	.14 .14 .10 .23	.50 .29 .48 .45	.09 .06 .10 .06	.02 .00 .03 .10
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	4.0 4.5 4.5 5.0	236 174 170 167 173	101 73 72 74 79 82	.21 .21 .29 .38 .35	.23 .23 .27 .33 .33	.02 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	.00 .000 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00	.00 .000 .00	120.50 3.89 60 .00 239	6014 200 346 23 11930	3086 99.5 163 52 6120	107.10 3.57 74 .00 212	168.40 5.43 58 .23 334	5.83 .19 .42 .00 12	.71 .024 .10 .00 1.4
CAL YR WTR YR		TAL 683.6 TAL 9502.5		1.87 26.0	MAX 24 MAX 346	MIN .00		1360 18850				

05051500 RED RIVER OF THE NORTH AT WAHPETON, ND

LOCATION.--Lat 46°15'55", long 96°35'40", in NEt sec.8, T.132 N., R.47 W., Richland County, Hydrologic Unit 09020104, on left bank in Wahpeton, 800 ft (240 m) downstream from confluence of Bois de Sioux and Otter Tail Rivers, and at mile 548.6 (882.7 km).

DRAINAGE AREA.--4,010 mi² (10,390 km²), approximately.

WTR YR 1982 TOTAL 165765

MEAN 454

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1942 to current year. Gage-height records collected in this vicinity since 1917 are contained in reports of the U.S. Weather Bureau.

GAGE.--Water-stage recorder and concrete and wooden dam. Datum of gage is 942.97 ft (287.417 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 6, 1943, U.S. Weather Bureau nonrecording gage 800 ft (240 m) upstream, converted to present datum. Aug. 6, 1943, to Oct. 27, 1950, nonrecording gage at present site and datum.

REMARKS.--Records good except those for winter periods, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft (17.4 hm³) at elevation 1,070 ft (326.136 m) National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft (169 hm³), available for flood control; numerous other controlled lakes and ponds, and several powerplants.

AVERAGE DISCHARGE.--39 years (1943-82), 523 ft 3 /s (14.82 m 3 /s), 378,900 acre-ft/yr (467 hm 3 /yr); median of yearly mean discharges, 464 ft 3 /s (13.1 m 3 /s), 336,000 acre-ft/yr (414 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 9,200 ft 3 /s (261 m 3 /s) Apr. 10, 1969, gage height, 16.34 ft (4.980 m); minimum daily, 1.7 ft 3 /s (0.048 m 3 /s) Aug. 28 to Sept. 5, 9, 10, 1976.

EXTREMES OUTSIDE PERIOD OF RECORD. -- A stage of 17.0 ft (5.182 m), discharge, 10,500 ft³/s (297 m³/s) occurred in the spring of 1897 and has not been exceeded since.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,120 ft 3 /s (88.4 m 3 /s) Apr. 1, gage height, 12.26 ft (3.737 m) backwater from ice; minimum daily, 37 ft 3 /s (1.05 m 3 /s) Aug. 17.

		DISCHARGE,	IN	CUBIC FEET	PER SECOND,	WATER	YEAR OCTOB	ER 1981 TC	SEPTEMBER	1982		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	61 60 60 67 80	184 183 184 184 181	155 133 152 159 152	189 132 132 219 299	200 198 188 185 190	352 350 359 370 365	3070 2700 1880 895 796	788 780 772 756 708	908 905 893 864 818	620 636 648 640 628	404 419 388 366 387	268 258 246 233 213
6 7 8 9 10	78 78 77 75 82	184 183 181 183 180	180 228 240 214 207	251 219 229 210 190	188 198 200 200 218	367 367 376 323 345	789 945 1070 967 1000	696 708 744 800 820	772 759 761 777 826	648 647 590 627 614	410 448 450 434 420	214 207 206 205 205
11 12 13 14 15	102 115 111 115 131	184 180 177 186 215	192 218 220 205 174	20 2 222 335 465 358	230 242 240 240 235	373 366 383 383 410	1090 1150 1200 1190 1210	820 880 916 936 944	823 810 797 783 765	596 601 610 619 616	408 344 403 315 99	196 195 191 182 200
16 17 18 19 20	174 197 199 197	221 221 220 183 148	173 189 215 238 238	278 254 254 237 225	245 260 290 279 225	425 475 535 600 680	1210 1220 1180 1120 1090	928 940 960 1010 1040	758 732 675 666 668	634 618 572 557 544	49 37 39 68 237	191 186 172 137 132
21 22 23 24 25	193 189 192 190 191	125 180 220 190 170	226 220 214 204 200	225 232 210 161 184	299 312 314 315 340	690 675 642 650 660	1100 1080 1060 1040 1010	1030 1020 997 980 975	663 621 609 606 573	538 508 486 457 456	316 345 341 318 283	131 130 125 129 130
26 27 28 29 30 31	188 195 269 194 180 180	164 141 175 198 162	209 208 192 178 190 202	206 215 215 214 212 200	351 355 355 	692 710 760 890 1530 2570	996 932 808 784 792	963 959 936 927 914 906	605 607 622 647 629	458 450 421 412 410 403	296 293 267 231 232 237	126 128 136 154 160
TOTAL MEAN MAX MIN AC-FT	4411 142 269 60 8750	183 221 125	6125 198 240 133 2150	7174 231 465 132 14230	253 355 185	.8673 602 2570 323 37040	35374 1179 3070 784 70160	889 1040 696	731 908 573	7264 557 648 403 4240	9284 299 450 37 18410	5386 180 268 125 10680

MAX 3070

MIN 37

AC-FT 328800

RED RIVER OF THE NORTH BASIN

05051500 RED RIVER OF THE NORTH AT WAHPETON, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

DATE	TIME	STRE FLO INST TANE (CI	EAM- COW, COM, COMAN- DEOUS AFS) (U	NCE MHOS)	PH (STAND- ARD UNITS) (00400)	AT A (DE	PER- URE, IR G C) 020)	TEMF ATU (DEG (000	PER- IRE C)	HAR NES (MG AS CAC	S /L 03)	DIS	VED /L CA)	DI SOI (MC AS	IS- LVED 3/L MG)		S- /ED S/L NA)
APR 20	1630	:	1090	488	8.3		11.5		6.0		230	4	16	:	28	ر	11
AUG 24	1145		321	385	8.2		22.0	2	24.0		195	3	32	:	28		6.0
DATE APR 20 AUG 24	A SOR TI RAT (009	ON	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFA' DIS- SOLV: (MG/) AS SO: (0094) 71	DIS ED SOI L (MC 4) AS	DE, S- LVED G/L CL)	FLUC RIDE DIS SOLV (MG/ AS F (0095	ED L	SILICA DIS- SOLVE (MG/I AS SIO2) (00955	D	SOLIDS RESIDU AT 180 DEG. DIS- SOLVE (MG/I (70300	JÉ C C J)		7 [5, ED		ED S	
DATE		S- VED /L AS)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON DIS SOLVI (UG/ AS FI (0104	ED SOIL (UCE) AS	AD, IS- LVED G/L PB)	LITHI DIS SOLV (UG/ AS L	S- 'ED 'L .I)	MANGA NESE, DIS- SOLVE (UG/I AS MM	ED	MERCUF DIS- SOLVE (UG/I AS HO	- ED H)	MOLYH DENUM DIS- SOLVH (UG/1 AS MO	(, ED	SELE NIUM DIS SOLV (UG/ AS S	ED L E)	
APR 20		1	50		10	0		16]	LO		. 2	•	1		1	
AUG 24		2	60		30	0		12]	LO		.3		2		0	

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	TEMPER- ATURE (DEG C) (00010)
OCT				
08	1755	76	522	11.0
NOV		- 1:0		
20 JAN	0920	148	412	.0
06	1620	251	490	•0
FEB	1020	4,74	.,,	• •
18	1450	282	675	.0
MAR	1 1 1 5	25.60	266	
31 APR	1445	2560	366	.0
06	1730	827	418	•5
20	1630	1090	488	•5 6.0
MAY				-0 -
19 JUL	1620	1040	499	18.0
07	0950	650	378	22.0
AUG	0770	0,0	310	22.0
24	1145	321	385	24.0

05051522 RED RIVER OF THE NORTH AT HICKSON, ND

LOCATION.--Lat 46°39'35", long 96°47'44", in SWt sec.19, T.137 N., R.48 W., Clay County, MN, Hydrologic Unit 09020104, on right bank 60 ft (18 m) downstream from bridge on township road 1 mi (2 km) southeast of Hickson, ND.

DRAINAGE AREA.--4,300 mi² (11,100 km²), approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1975 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 877.06 ft (267.3 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for winter periods, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft (17.4 hm²) at elevation 1,070 ft (326.136 m) National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft (169 hm³), available for flood control; numerous other controlled lakes and ponds, and several powerplants.

AVERAGE DISCHARGE.--7 years, 491 ft^3/s (13.91 m^3/s), 355,700 acre-ft/yr (439 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,600 ft³/s (272 m³/s) Apr. 18, 1979, gage height, 33.03 ft (10.068 m); no flow Oct. 26, 1976 to Jan. 9, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,200 ft 3 /s (119 m 3 /s) Apr. 4, gage height, 23.07 ft (7.032 m) backwater from ice; minimum daily, 51 ft 3 /s (1.44 m 3 /s) Aug. 20.

		DISCHARG	E, IN CU	BIC FEET	PER SECOND,	WATER	YEAR OCTO	BER 1981	TO SEPTEM	MBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	YAM	JUN	JUL	AUG	SEP
1	58	197	244	210	220	355	3300	820	976	706	449	277
2	61	190	204	230	216	345	3650	828	975	690	443	284
3	63	191	168	202	212	346	4000	834	972	694	446	296
4	70	192	132	205	210	354	4150	828	963	696	441	299
5	74	192	99	220	210	360	3700	815	949	695	408	286
6	77	192	102	230	215	394	2900	786	922	685	406	269
7	76	188	152	237	212	401	2000	761	878	677	448	253
8	78	184	195	221	200	410	1440	759	849	695	449	256
9	72	184	230	215	225	411	1420	772	839	688	460	250
10	73	180	242	243	230	408	1580	822	848	666	453	252
11	77	184	230	236	248	366	1690	839	869	668	445	245
12	80	188	215	196	235	370	1760	844	884	644	436	246
13	100	192	215	170	232	388	1360	880	882	639	407	247
14	122	192	215	178	250	395	1210	930	869	643	385	237
15	122	188	215	244	268	427	1240	965	857	649	415	236
16	122	192	200	312	260	476	1240	981	844	643	297	234
17	137	200	150	366	264	542	1220	989	824	647	154	236
18	188	204	158	352	264	590	1220	991	817	647	83	234
19	216	214	190	300	260	649	1200	1010	781	616	59	222
20	224	214	210	280	262	726	1150	1040	750	588	51	205
21	228	129	235	266	264	742	1110	1070	746	587	95	169
22	228	96	234	256	266	758	1100	1090	742	575	280	157
23	228	118	234	240	271	774	1100	1080	729	547	348	155
24	224	227	240	216	285	779	1090	1060	711	528	372	152
25	224	310	232	196	292	782	1050	1050	709	511	372	148
26 27 28 29 30 31	224 224 228 259 219	286 230 220 196 204	230 226 215 210 200 192	164 176 200 224 228 216	301 328 351 	775 786 800 1070 2180 2900	1030 1010 978 888 833	1040 1030 1020 1020 996 979	673 673 705 728 716	493 489 485 466 449 443	355 328 332 334 306 279	153 156 153 155 168
TOTAL MEAN MAX MIN AC-FT	4600 148 259 58 9120	5874 196 310 96 11650	6214 200 244 99 12330	7229 233 366 164 14340	252 351 200	21059 679 2900 345 41770	51619 1721 4150 833 102400	28929 933 1090 759 57380	24680 823 976 673 48950	18849 608 706 443 37390	10550 340 460 51 20900	6630 221 299 148 13150

WTR YR 1982 TOTAL 193270 MEAN 530 MAX 4150 MIN 51 AC-FT 383400

05051522 RED RIVER OF THE NORTH AT HICKSON, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1976 to current year.

			•						•		
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS (MG/L AS CACO3) (00900)
JAN 07 JUN	1135	237	510	7.9	-20.5	.0	5	3.0	12.6	89	257
01	1510	972	468	8.4	19.0	17.5	15	56	8.4	91	219
JUL 08	1100	695	398	8.1	29.0	24.0	30	120	6.5	80	195
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
JAN 07 JUN	47	34	12	•3	4.2	11	8.8	.2	15	300	282
01 JUL	40	29	10	•3	5.1	27	7.4	•1	11	277	246
08	37	25	8.6	•3	3.8	14	5.5	.1	14	224	223
DATE	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)
JAN 07	102	.17	10	•450	65	1 10	1 2	.070	.070	8.6	•3
JUN	192		.10		.65	1.10	1.3				
JUL JUL	727	<.10	<.10	.190	2.0	2.20		.210	.050	8.5	1.2
08	420	.19	.18	.230	1.4	1.60	1.8	.170	.060	7.5	1.0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	TEMPER- ATURE (DEG C) (00010)
OCT				
08	1315	78	506	10.5
NOV 19	1135	216	502	3.0
JAN	1137	210	J02	3.0
07	1135	237	510	.0
FEB 18	1005	272	495	•5
APR 06	1220	2900	380	•0
JUN	1220	2900	300	•0
01	1510	972	468	17.5
JUL 08	1100	695	398	24.0
AUG 24	1725	381	425	24.0

05054000 RED RIVER OF THE NORTH AT FARGO, ND

LOCATION.--Lat 46°51'40", long 96°47'00", in NW\left sec.18, T.139 N., R.48 W., Cass County, Hydrologic Unit 09020104, at city waterplant on 4th St. S. in Fargo, 25 mi (40 km) upstream from mouth of Sheyenne River, and at mile 453.0 (728.9 km).

DRAINAGE AREA.--6,800 mi² (17,600 km²), approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1901 to current year. Published as "at Moorhead, Minn." 1901. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1902-4, 1906-7, 1910-14, 1916, 1918, 1924. WSP 1388: 1905-6, 1917-20(M), 1935(M), 1938-39(M), 1943.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 861.8 ft (262.68 m) National Geodetic Vertical Datum of 1929. Oct. 1, 1960, to Sept. 30, 1962, water-stage recorder at present site at datum 5.6 ft (1.71 m) higher. See WSP 1728 or 1913 for history of changes prior to Oct. 1, 1960.

REMARKS.--Records good except those for winter periods, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft (17.4 hm³) at elevation 1,070 ft (326.136 m) National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft (169 hm³), available for flood control; other controlled lakes and ponds and several powerplants. Some small diversions for municipal supply. Figures of daily discharge do not include diversions to cities of Fargo and Moorhead and from Sheyenne River.

AVERAGE DISCHARGE (UNADJUSTED).--81 years, 554 ft 3 /s (15.69 m 3 /s), 401,400 acre-ft/yr (495 hm 3 /yr); median of yearly mean discharges, 443 ft 3 /s (12.5 m 3 /s), 321,000 acre-ft/yr (396 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 25,300 ft^3/s (716 m^3/s) Apr. 15, 1969, gage height, 37.34 ft (11.381 m); no flow for many days in each year for period 1932-41, Sept. 30, Oct. 1, 2, 1970, Oct. 10-19, 1976.

EXTREMES OUTSIDE PERIOD OF RECORD, -- Flood of Apr. 7, 1897 reached a stage of 39.1 ft (11.92 m) present datum, discharge, 25,000 ft³/s (708 m³/s) at site 1.5 mi (2.4 km) downstream.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,920 ft³/s (168 m³/s) Apr. 4, gage height, 25.07 ft (7.641 m) backwater from ice; minimum daily, 45 ft³/s (1.27 m³/s) Aug. 21.

		DISCHARGE,	IN CU	BIC FEET	PER SECOND	, WATER	YEAR OCTO	BER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NoV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	60 55 46 63 71	218 186 177 177	200 193 169 153 118	198 222 224 205 203	200 192 192 198 200	340 350 355 370 370	4900 5500 5700 5800 5600	862 854 854 846 830	935 935 934 932 933	674 671 668 668 675	419 408 401 401 383	239 237 254 266 248
6 7 8 9 10	68 63 63 63	177 172 164 168 168	101 102 140 190 223	222 229 225 245 255	200 192 210 194 240	380 400 455 450 440	4950 3800 2880 2120 1820	798 750 726 742 798	945 891 837 834 828	648 641 688 737 673	361 403 422 428 427	240 222 213 209 210
11 12 13 14 15	65 114 97 68 88	168 172 168 168 177	225 204 189 199 209	258 250 232 232 250	220 244 238 244 252	425 380 405 430 450	1780 1880 1820 1860 1830	822 830 838 910 959	838 887 899 893	667 649 631 635 644	417 410 402 359 366	208 222 210 202 211
16 17 18 19 20	111 190 177 164 177	171 182 206 210 215	208 199 168 160 193	210 325 285 220 185	260 260 265 260 270	480 515 575 580 700	1770 1700 1640 1580 1490	977 1020 986 995 1020	874 849 837 812 769	655 748 776 785 697	352 229 126 74 46	200 196 197 189 181
21 22 23 24 25	190 190 190 186 186	187 121 99 136 250	213 228 227 220 230	155 270 260 250 245	265 260 240 270 285	760 740 740 740 730	1400 1330 1300 1260 1230	1060 1100 1080 1060 1050	733 724 719 709 682	649 624 592 547 526	45 106 250 335 350	164 144 132 131 135
26 27 28 29 30 31	195 192 198 198 233 243	305 240 215 205 177	221 207 202 200 206 202	210 170 165 190 195 200	295 300 325 	740 730 800 1140 2500 4000	1180 1120 1080 1000 902	1030 1010 1000 1000 981 952	658 628 649 697 689	492 470 467 454 429 412	341 310 302 304 284 270	127 120 136 129 124
TOTAL MEAN MAX MIN AC-FT † MEAN ‡ AC-FT ‡	4067 131 243 46 8070 1067 148 9140	185 305 99 11020 1 1035 202 12060 1	5899 190 230 101 1700 1015 206 2720 ERVED	6985 225 325 155 13850 1113 243 14960	242 325 192	22470 725 4000 340 44570 1260 746 45830	72222 2407 5800 902 143300 1105 2426 144400	28740 927 1100 726 57010 1207 947 58220	24437 815 945 628 48470 1350 838 49820	19292 622 785 412 38270 1567 648 39840	9731 314 428 45 19300 1733 342 21030 ADJUSTED	5696 190 266 120 11300 1335 212 12640

AC-FT 142100 AC-FT 420200 MEAN 217 AC-FT 157110 MEAN 601 AC-FT 435120

MEAN 196 MEAN 580 MAX 1710

MAX 5800

MIM 27

CAL YR 1981 TOTAL 71651 WTR YR 1982 TOTAL 211866

[†] Diversions in acre-feet to cities of Fargo and Moorhead. ‡ Adjusted for diversions to cities of Fargo and Moorhead.

05054000 RED RIVER OF THE NORTH AT FARGO, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1956 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	HARD- NESS (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
APR 09	1150	2120	400	8.3	6.5	.0	175	42	17
AUG 25	1215	368	415	8.2	24.5	23.0	204	34	29
DATE APR 09	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO-RIDE, DIS-SOLVED (MG/LAS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
AUG		_					_	_	
25	9.5	•3	4.3	21	6.5	• 2	16	275	246
DATE	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
APR 09	1350	2	20	80	0	17	50	.6	0
AUG 25	273	4	70	40	0	12	0	•3	0

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	TEMPER- ATURE (DEG C) (00010)
OCT				
07	1250	64	558	16.0
NOA				
18	1335	200	509	4.0
JAN 08	1155	226	530	.0
FEB			231	
17	1525	259	538	•5
MAR				_
31 APR	1000	4100	255	.0
09	1150	2120	400	.0
MAY				
27	1140	1020	521	19.5
JUL 06	1355	655	407	25.5
AUG	1377	0))	,0,	27.7
25	1215	368	415	23.0

05054020 RED RIVER OF THE NORTH BELOW FARGO, ND

WATER-QUALITY RECORDS

LOCATION.--Lat 46°55'50", long 96°47'05", in SWANEA sec. 19, T.140 N., R.48 W., Cass County, Hydrologic Unit 09020104, at bridge on county highway 2 mi (3.2 km) north of North Dakota State University campus in Fargo, and 12 mi (19 km) above mouth of Sheyenne River.

DRAINAGE AREA.--6,820 mi² (17,660 km²), approximately.

PERIOD OF RECORD. -- Water years 1969 to current year.

WATER QUALITY DATA WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		WA	TER QUALI	TY DATA,	WATER YE	AR OCTOBER	1981 TO	SEPTEMBER	1982		
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	HARD- NESS (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
NOV 18	1430	200	572	8.5	3.0	4.0	10	265	50	34	18
JAN 07	1530	E240	535	8.1	-16.0	.0	10	261	47	35	16
FEB 17	1525	259	538	7.6	3.0	•5	5	261	47	35	14
MAY 27	1300	1080	530	8.5	24.0	19.5		254	49	32	16
JUL 06	1130	655	408	8.3	21.0	24.0	40	193	36	25	9.0
AUG 25	0800	368	640	8.5	15.5	22.0	30	259	41	38	27
DATE	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)
NOV 18	•5	5.6	66	11	•2	2.2	315	313	170	.16	.020
JAN 07	• 4	5.2	24	11	.2	14	317	302		.21	.100
FEB 17 MAY	. 4	6.0	23	17	•3	20	314	312	220	.34	•050
27 JUL	. 4	5.7	88	9.5	.1	9.4	345	328	1010	<.10	•050
06 AUG	•3	4.2	20	6.5	.1	13	237	230	419	.24	.060
25	•7	20	33	47	.2	17	433	367	430	•51	.150
	DATE MAY	TIME	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	
	27 AUG	1300	3	69	<3	<10	<1	2	9	<1	
	25	0800	5	100	<1	<10	<5	' 5	16	15	
	MA	D SO (U ATE AS (O1	HIUM NE IS- D LVED SO G/L (U LI) AS 130) (01	IS-	RCURY DE DIS- D DLVED SC JG/L (U S HG) AS .890) (01	NUM, NI DIS- DO DLVED SO G/L (UG S MO) AS 060) (01	UM, DI IS- D LVED SO G/L (U SE) AS 145) (01	DIS- DI LVED SOI G/L (UG V) AS 085) (016	LVED TO 3/L (M ZN) AS 090) (00	NIDE TAL G/L CN) 720)	
	A U	7 g 5	32 17	4	<.1	2	<1	5.7		<.01 <.01	
	2	J • • •	17	2	<.1	11	<1	5.1	O	å 01	

05061000 BUFFALO RIVER NEAR HAWLEY, MN

LOCATION.--Lat 46°51'00", long 96°19'45", in NW\sE\ sec.14, T.139 N., R.45 W., Clay County, Hydrologic Unit 09020106, near left downstream end of bridge on farm lane, 2 mi (3 km) southwest of Hawley.

DRAINAGE AREA. -- 322 m12 (834 km2).

PERIOD OF RECORD.--March 1945 to September 1980, annual maximum discharge WY 1981, March 1982 to August 1982. REVISED RECORDS.--WSP 1308: 1945-46(M), 1948(M).

GAGE.--Water-stage recorder. Datum of gage is 1,111.91 ft (338.910 m) National Geodetic Vertical Datum of 1929. Prior to Jan. 29, 1953, nonrecording gage at bridge 1,800 ft (549 m) upstream at datum 3.17 ft (0.97 m) lower.

REMARKS. -- Records good except those for winter period, which are fair.

AVERAGE DISCHARGE.--35 years (water years 1945-80), 72.7 ft³/s (2.059 m³/s), 52,670 acre-ft/yr (64.9 hm³/yr).

EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 2,050 ft 3 /s (58.1 m 3 /s) July 1, 1975, gage height, 9.76 ft (2.975 m); minimum, 2.8 ft 3 /s (0.079 m 3 /s) Aug. 26, 1977; minimum gage height, 2.55 ft (0.777 m) Sept. 5, 1961.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage known, about 11.3 ft (3.44 m), present datum, spring of 1921, from information by local resident.

EXTREMES FOR CURRENT PERIOD:--March to August 1982: Maximum discharge during period, $468 \text{ ft}^3/\text{s}$ (13.3 m³/s) Apr. 2, gage height, 7.22 ft (2.201 m) (backwater from ice); minimum daily discharge, 10 ft³/s (0.28 m³/s) Mar. 1; minimum gage height, 3.25 ft (0.991 m) July 7, 8.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982
MEAN VALUES

					(V	TEAN VALU	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP
1 2 3 4 5						10 16 16 12 12	360 455 410 216 181	92 90 82 73 76	61 59 56 51 53	27 26 26 24 23	35 33 31 29 28	20 21 20 18 17
6 7 8 9 10					 	12 14 14 22 20	241 274 250 226 233	76 71 66 68 67	52 50 49 50 51	22 22 21 81 242	27 29 29 27 25	15 14 13 12 12
11 12 13 14 15						20 25 40 65 100	234 228 252 317 361	65 63 62 62 75	53 51 49 47 44	254 154 108 78 66	24 22 21 20 19	11 12 14 16 16
16 17 18 19 20						125 140 150 150 135	355 324 297 268 241	81 88 100 115 119	41 38 36 34 33	57 53 46 47 75	18 19 20 20 20	16 17 18 27 29
21 22 23 24 25					21 15	120 140 140 91 60	211 187 165 149 137	114 111 101 89 78	31 29 29 29	125 142 142 115 77	19 18 17 18 17	23 19 17 14 13
26 27 28 29 30 31					18 15 12 	45 45 60 120 215 285	125 110 100 93 90	69 65 63 60 58 59	30 29 28 28 28	67 58 50 43 40 38	16 17 18 21 21	13 13
TOTAL MEAN MAX MIN AC-FT						2419 78.0 285 10 4800	7090 236 455 90 14060	2458 79•3 119 58 4880	1250 41.7 61 28 2480	2349 75•8 254 21 4660	699 22•5 35 16 1390	

05061500 SOUTH BRANCH BUFFALO RIVER AT SABIN, MN

LOCATION.--Lat 46°46'20", long 96°37'40", in SW\SW\sec.9, T.138 N., R.47 W., Clay County, Hydrologic Unit 09020106, near center of span on downstream side of highway bridge, 0.3 mi (0.5 km) downstream from Stony Creek and 1 mi (1.6 km) east of Sabin.

DRAINAGE AREA.--522 mi² (1,351 km²).

PERIOD OF RECORD. -- March 1945 to September 1980, annual maximum discharge WY 1981, March 1982 to August 1982.

REVISED RECORDS. -- WSP 1308: 1949(M).

GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 902.39 ft (275.05 m) National Geodetic Vertical Datum of 1929 (levels by Soil Conservation Service). Prior to Aug. 17, 1948, nonrecording gage at site 1 mi (1.6 km) downstream at different datum.

REMARKS .-- Records fair except those for winter period, which are poor.

AVERAGE DISCHARGE.--35 years (water years 1945-80), 56.0 ft 3 /s (1.586 m 3 /s), 40, $^{\dot{b}}$ 70 acre-ft/yr (50.0 hm 3 /yr); median of yearly mean discharges, 41.4 ft 3 /s (1.172 m 3 /s), 29,990 acre-ft/yr (37.0 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 8,500 ft 3 /s (241 m 3 /s) July 2, 1975, gage height, 19.90 ft (6.066 m); no flow for many days in most years.

EXTREMES FOR CURRENT PERIOD.—March to August 1982: Maximum discharge during period, 1,350 ft 3 /s (38.2 m 3 /s) Apr. 1, gage height, 13.12 ft (3.999 m) from highwater mark; no flow Mar. 1-10.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

						MEAN VALO	50					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MA Y	JUN	m JUL	AUG	SEP
1 2 3 4 5						.00 .00 .00 .00	1320 950 650 541 446	40 39 38 34 30	15 13 12 12 11	1.1 2.8 7.9 16	1.8 1.9 2.2 1.6 .88	
6 7 8 9 10						.00 .00 .00	368 311 277 224 177	28 29 28 28 29	11 11 9.6 9.8 9.6	17 14 13 14 11	•34 1•9 2•2 2•5 2•4	
11 12 13 14 15						2.0 2.5 3.0 7.0	152 136 133 144 160	30 33 38 39 56	8.1 6.5 6.7 7.0 5.2	8.2 5.4 7.7 7.4 7.6	2.5 1.9 1.3 1.6 1.8	
16 17 18 19 20						10 10 32 385 465	174 168 151 138 119	67 70 76 90 96	4.2 3.7 3.1 2.8 2.6	5.4 5.7 6.4 7.0	1.9 2.0 1.9 1.8 2.4	
21 22 23 24 25						465 455 408 410 355	111 96 88 78 72	90 79 66 55 47	2.5 2.1 2.0 2.0 1.6	10 9.1 6.7 5.7 5.2	3.0 3.0 3.0 5.9 6.7	
26 27 28 29 30 31						305 285 290 430 870 1340	65 58 54 47 42	39 32 29 26 22 18	1.1 1.0 1.5 1.1	4.6 3.5 2.5 2.1 1.8 1.6	3.6 2.4 3.6 3.2 2.7 2.5	
TOTAL MEAN MAX MIN AC-FT						6545.50 211 1340 .00 12980	7450 248 1320 42 14780	1421 45.8 96 18 2820	179.9 6.00 15 1.0 357	239.4 7.72 19 1.1 475	76.+2 2.47 6.7 .34 152	

05062000 BUFFALO RIVER NEAR DILWORTH, MN

LOCATION.--Lat 46°57'40", long 96°39'40", in SW\sE\ sec.6, T.140 N., R.47 W., Clay County, Hydrologic Unit 09020106, on left bank 4.5 mi (7.2 km) southeast of Kragnes, 6.5 mi (10.5 km) northeast of Dilworth, and 9 mi (14 km) downstream from South Branch.

DRAINAGE AREA.--1,040 mi² (2,690 km²), approximately.

PERIOD OF RECORD. -- March 1931 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS .-- WSP 1308: 1931(M).

GAGE.--Water-stage recorder. Datum of gage is 878.31 ft (267.709 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Apr. 5, 1937, nonrecording gage at same site and datum.

REMARKS .-- Records good except those for winter period, which are fair.

AVERAGE DISCHARGE.--51 years, 128 ft 3 /s (3.625 m 3 /s), 92,740 acre-ft/yr (114 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,600 ft 3 /s (385 m 3 /s) July 2, 1975, gage height, 27.10 ft (8.260 m); no flow at times in 1936.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,210 ft 3 /s (62.6 m 3 /s) Apr. 2, gage height, 17.80 ft (5.425 m); minimum, 6.9 ft 3 /s (0.20 m 3 /s) Sept 12, gage height, 2.20 ft (0.671 m).

		DISCHARGE	, IN C	UBIC FEET		D, WATER MEAN VALU	YEAR OCTOB	ER 1981	TO SEPTEM	BER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 17 19 24 33	91 89 86 83 79	72 65 61 59 55	16 16 15 15	12 12 12 12 12	22 24 24 24 24	1820 2160 2020 1820 1560	163 159 156 150 139	96 94 89 82 76	26 26 26 24 23	50 46 43 39 35	22 22 19 20 19
6 7 8 9 10	39 45 55 68 84	77 75 71 71 71	53 50 43 38 36	15 14 14 14 14	12 12 12 12 12	22 20 22 22 24	1240 1020 736 654 586	136 134 128 122 125	76 77 74 72 73	22 25 27 39 83	33 32 32 37 33	16 14 13 12 11
11 12 13 14 15	86 88 89 86 87	69 70 70 68 67	35 34 33 32 28	14 13 13 13	12 12 12 12 12	24 25 26 28 32	531 509 477 476 515	125 122 121 125 138	70 67 65 61 57	192 193 151 118 94	29 27 25 24 22	9.1 8.1 11 12 16
16 17 18 19 20	89 96 104 106 108	68 71 72 72 67	28 27 26 25 23	13 13 13 13	12 13 14 15 16	42 65 165 190 220	557 564 541 499 452	163 170 191 205 217	52 48 44 41 39	81 73 71 68 66	21 22 27 23 25	19 19 20 18 27
21 22 23 24 25	120 123 118 111 104	66 67 69 72 74	22 21 20 20 19	13 13 12 12 12	16 17 18 18 20	335 450 500 505 480	405 366 330 300 272	224 217 206 187 168	37 33 31 30 31	77 116 127 126 118	23 21 21 20 18	42 31 22 18 18
26 27 28 29 30 31	97 92 88 86 89 92	71 65 64 66 69	19 18 18 17 17	12 12 12 12 12 12	20 22 22 	460 430 425 545 940 1260	247 224 203 181 171	151 135 121 114 106 101	30 30 30 30 29	96 82 72 63 57 53	16 16 15 17 21 24	16 14 14 13 15
TOTAL MEAN MAX MIN AC-FT	2460 79.4 123 17 4880		1030 33.2 72 16 2040	413 13.3 16 12 819	403 14.4 22 12 799	7375 238 1260 20 14630	21436 715 2160 171 42520	4719 152 224 101 9360	1664 55•5 96 29 3300	2415 77•9 193 22 4790	837 27.0 50 15 1660	530.2 17.7 42 8.1 1050

CAL YR 1981 TOTAL 21828.0 MEAN 59.8 MAX 977 MIN 11 AC-FT 43300 WTR YR 1982 TOTAL 45452.2 MEAN 125 MAX 2160 MIN 8.1 AC-FT 90150

05062500 WILD RICE RIVER AT TWIN VALLEY, MN

LOCATION.--Lat 47°16'00", long 96°14'40", in NWiNEi sec.27, T.144 N., R.44 W., Norman County, Hydrologic Unit 09020108, on left bank 100 ft (30 m) upstream from highway bridge, 0.8 mi (1.3 km) northeast of village of Twin Valley, and 2 mi (3 km) upstream from small tributary.

DRAINAGE AREA. -- 888 m12 (2,300 km2).

PERIOD OF RECORD. -- June 1909 to September 1917, July 1930 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS. -- WSP 955: 1941. WSP 1308: 1915(M), 1917(M).

GAGE.--Water-stage recorder. Datum of gage is 1,008.16 ft (307.287 m) National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). June 1909 to September 1917, nonrecording gage at site 0.2 mi (0.3 km) downstream at different datum. July 23, 1930, to Nov. 24, 1934, nonrecording gage at highway bridge 100 ft (30 m) downstream from present site at present datum. Nov. 25, 1934, to Aug. 2, 1950, water-stage recorder 80 ft (24 m) upstream from present site at present datum.

REMARKS.--Records good except those for winter period, which are fair. Flow slightly regulated by Rice Lake and many other small lakes above station.

AVERAGE DISCHARGE.--60 years, 173 ft 3 /s (4.899 m 3 /s), 125,300 acre-ft/yr (154 hm 3 /yr); median of yearly mean discharges, 154 ft 3 /s (4.36 m 3 /s), 125,000 acre-ft/yr (154 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,200 ft 3 /s (261 m 3 /s) July 22, 1909, gage height, 20.0 ft (6.10 m), site and datum then in use, from rating curve extended above 3,300 ft 3 /s (93.5 m 3 /s); minimum, 0.5 ft 3 /s (0.014 m 3 /s) Nov. 4, 1939.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 1,200 ft 3 /s (34.0 m 3 /s) Apr. 19, gage height, 6.51 ft (1.984 m); maximum gage height, 9.01 ft (2.746 m) Mar. 30 (backwater from ice); minimum daily discharge, 11 ft 3 /s (0.31 m 3 /s) Aug. 30, Sept. 2, 3, 7-10; minimum gage height, 1.07 ft (0.326 m) Sept. 3.

DISCHARGE, IN COBIC FEET PER SECOND, WAT	ER YEAR OUTUBER 1901 TO SEPTEMBER 1902
MEAN VA	LUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	J.UN	JUL	AUG	SEP
1	61	248	148	58	50	50	1050	685	408	89	45	12
2	59	242	135	57	50	50	1000	677	381	84	43	11
3	80	234	132	57	50	50	1000	615	356	81	41	11
4	107	222	122	57	50	50	900	576	326	78	39	12
5	128	213	92	57	50	50	800	542	303	76	37	12
6 7 8 9	173 204 219 215 208	216 222 216 203 197	67 101 113 105 100	57 57 57 56 56	50 50 50 50 50	51 51 51 52 52	600 500 540 560 550	524 508 488 464 445	281 262 250 254 239	72 71 73 77 66	35 35 32 31 29	12 11 11 11 11
11	20 2	184	95	55	50	52	520	445	223	68	27	12
12	20 7	179	90	55	50	53	652	443	216	62	26	15
13	20 7	173	87	54	50	53	735	428	204	58	25	16
14	20 6	175	84	54	50	53	816	408	193	53	25	16
15	20 9	175	80	53	50	53	895	400	187	49	24	17
16 17 18 19 20	209 253 278 332 339	180 182 192 187 175	77 75 73 71 70	53 53 53 53 53	50 50 50 50 50	74 110 190 230 240	1020 1140 1190 1200 1180	453 550 728 804 7 99	189 178 160 141 134	46 43 44 65 66	23 25 24 22 19	18 18 17 17
21	321	145	68	52	50	220	1150	809	125	64	18	17
22	312	122	66	52	50	180	1120	790	119	62	17	17
23	293	144	65	52	50	160	1080	727	115	59	18	16
24	281	181	64	52	50	160	1030	687	116	57	16	16
25	273	184	62	52	50	170	969	658	110	55	14	16
26 27 28 29 30 31	263 255 276 267 261 254	165 150 140 144 146	61 60 59 59 58 58	51 51 51 51 51 51	50 50 50 	180 200 260 400 700 1110	909 853 802 758 745	624 584 545 509 475 443	117 116 104 97 95	52 46 44 42 44	14 13 12 12 11 12	16 16 16 17 17
TOTAL	6952	5536	2597	1671	1400	5355	26264	17833	5999	1890	764	441
MEAN	224	185	83.8	53.9	50.0	173	875	575	200	61.0	24.6	14.7
MAX	339	248	148	58	50	1110	1200	809	408	89	45	18
MIN	59	122	58	51	50	50	500	400	95	42	11	11
AC-FT	13790	10980	5150	3310	2780	10620	52090	35370	11900	3750	1520	875

CAL YR 1981 TOTAL 38809 MEAN 106 MAX 339 MIN 15 AC-FT 76980 WTR YR 1982 TOTAL 76702 MEAN 210 MAX 1200 MIN 11 AC-FT 152100

05064000 WILD RICE RIVER AT HENDRUM, MN

LOCATION.--Lat 47°16'05", long 96°47'50", in SE\SE\ sec.19, T.144 N., R.48 W., Norman County, Hydrologic Unit 09020108, near center of span on downstream side of highway bridge, 0.5 mi (0.8 km) east of Hendrum and 4 mi (6.4 km) upstream from mouth.

DRAINAGE AREA.--1,600 mi² (4,140 km²), approximately.

PERIOD OF RECORD .-- March 1944 to current year.

REVISED RECORDS .-- WSP 1728: 1958.

GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 836.75 ft (255.041 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

REMARKS.--Records fair. Large part of high flow diverted into Marsh River basin at overflow section 3.5 mi (5.6 km) east of Ada. Another diversion into the Marsh River basin formed in 1947, 1.5 mi (2.4 km) southeast of Ada and diverted water at all stages 1947-51, after which it was closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent. Amount of diversion not known.

AVERAGE DISCHARGE.--38 years, 258 ft 3 /s (7.307 m 3 /s), 186,900 acre-ft/yr (230 hm 3 /yr); median of yearly mean discharges, 210 ft 3 /s (5.95 m 3 /s), 152,000 acre-ft/yr (187 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,350 ft³/s (265 m³/s) Apr. 10, 1978, gage height, 31.42 ft (9.577 m); maximum gage height, 32.30 ft (9.845 m) Apr. 21, 1979, backwater from Red River of the North; no flow some days in 1948-49.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,280 ft³/s (92.9 m³/s) Apr. 3, gage height, 22.51 ft (6.861 m), backwater from Red River of the North; minimum daily, 13 ft³/s (0.37 m³/s) Sept. 7,8; minimum gage height, 1.64 ft (0.500 m) Sept. 7.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 65 65 684 289 165 3250 618 13 14 115 65 277 87 55 Ŕ 65 Q '6o 65 15 95 35 183 9ŏ 931 885 75 23 599 545 28 312 60 877 75 ---16 ---1637 3250 TOTAL MEAN 288 98.4 612 220 113 19.1 62.4 219 39.0 60.0 MAX MIN AC-FT

CAL YR 1981 TOTAL 48750.4 MEAN 134 MAX 1480 MIN 8.0 AC-FT 96700 WTR YR 1982 TOTAL 108696.0 MEAN 298 MAX 3250 MIN 13 AC-FT 215600

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN

LOCATION.--Lat 47°21'10", long 96°50'50", on line between secs.24 and 25, T.145 N., R.49 W., Traill County, Hydrologic Unit 09020107, on left bank on upstream side of highway bridge, 0.5 mi (0.8 km) west of Halstad, 2.5 mi (4.0 km) downstream from Wild Rice River, and at mile 375.2 (603.7 km).

DRAINAGE AREA.--21,800 m12 (56,500 km2), approximately, including 3,800 m12 (9,840 km2) in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1936 to June 1937 (no winter records), April 1942 to September 1960 (spring and summer months only), May 1961 to current year.

REVISED RECORDS.--WSP 1388: 1936, 1950. WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 826.65 ft (251.963 m) National Geodetic Vertical Datum of 1929. Prior to July 17, 1961, nonrecording gage at same site and datum.

REMARKS .-- Records good. Some regulation by many controlled lakes and reservoirs on tributaries.

AVERAGE DISCHARGE.--21 years (1961-82), 1,750 ft 3 /s (49.6 m 3 /s), 1,270,000 acre-ft/yr (1.56 km 3 /yr); median of yearly mean discharges, 1,540 ft 3 /s (43.6 m 3 /s), 1,120,000 acre-ft/yr (1.4 km 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 42,000 ft³/s (1,190 m³/s) Apr. 22, 1979, gage height, 39.00 ft (11.887 m); minimum observed, 5.4 ft³/s (0.15 m³/s) Oct. 8, 9, 12-14, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in 1897 reached a stage of about 38.5 ft (11.73 m).

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 13,200 ft 3 /s (374 m 3 /s) Apr. 9, gage height, 27.13 ft (8.269 m) backwater from ice; minimum daily, 168 ft 3 /s (4.76 m 3 /s) Oct. 1.

		DISCHARGE	, IN C	UBIC FEET	PER SECONI), WATER	YEAR OCTO	BER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	168	780	950	350	310	455	8500	2710	1990	1040	718	345
2	173	740	740	340	310	460	10800	2480	1900	1000	695	336
3	193	703	575	330	310	465	12400	2340	1810	958	679	320
4	223	680	550	320	310	470	12700	2400	1760	938	668	303
5	236	630	545	320	310	475	13000	2510	1700	913	668	295
6	303	600	540	320	307	475	13100	2480	1660	881	674	301
7	402	620	536	300	307	475	13100	2380	1620	886	658	292
8	472	710	530	300	307	480	13100	2200	1620	906	636	285
9	505	820	520	300	307	480	13100	2020	1590	989	630	274
10	539	910	515	300	305	480	13000	1900	1540	1110	626	261
11	569	930	510	300	305	490	12900	1960	1490	1140	617	255
12	588	918	505	300	305	500	12400	1940	1430	1060	609	260
13	611	854	495	300	305	500	12000	1900	1380	1110	598	261
14	633	820	490	300	305	485	11500	1840	1340	1120	587	2 69
15	681	850	485	300	310	485	10900	1860	1300	1050	577	289
16	633	862	475	300	360	510	10200	2050	1260	988	542	28 2
17	675	850	465	300	370	590	10000	2390	1240	939	529	28 6
18	739	820	475	300	380	680	9500	2670	1220	909	527	29 2
19	858	769	451	305	390	830	8700	2810	1180	992	465	29 7
20	910	713	415	310	400	1000	8000	2930	1170	1260	3 7 0	28 9
21	930	630	390	315	405	1300	7420	2880	1140	1490	305	281
22	930	580	380	320	420	1450	6830	2800	1140	1440	268	272
23	950	565	380	320	430	1500	6330	2730	1130	1370	220	274
24	890	570	390	310	440	1600	5840	2600	1090	1320	206	304
25	760	600	390	310	440	1750	5280	2450	1090	1250	278	286
26 27 28 29 30 31	680 710 780 787 798 815	620 700 798 1010 1030	390 390 390 380 370 360	310 310 310 310 310 310	440 440 450 	1800 1900 2000 2400 3600 6300	4610 4010 3550 3230 2960	2320 2200 2100 2060 2040 2040	1090 1050 1030 1999 1010	1140 1050 930 833 783 746	389 432 415 387 364 357	257 246 250 242 241
TOTAL MEAN MAX MIN AC-FT	19141 617 950 168 37970	756 1030 565	14977 483 950 360 29710	9630 311 350 300 19100	9978 356 450 305 19790	36385 1174 6300 455 72170	278960 9299 13100 2960 553300	71990 2322 2930 1840 142800	40969 1366 1990 999 81260	32541 1050 1490 746 64550	15694 506 718 206 31130	8445 282 345 241 167 5 0
CAL YR WTR YR			MEAN MEAN		MAX 3800 MAX 13100	MIN 12 MIN 16						

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued (National stream-quality accounting network station) (Radiochemical station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1961-67, 1972 to current year.

REMARKS.--Letter K indicates non-ideal colony count and letter E indicates estimated value.

		WALLIN	ondere on	,	· ILMII OO	100011 170	1 10 00111		•	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
DEC 18	1540	475	735	8.1	-18.0	.0	7.3	12.4	86	K17
MAR 22	1230	E1450	550	7.9	3.0	.0	24	10.1	71	97
APR 30 JUL	1200	3000	538	8.4	17.0	12.5	32	9.8	94	<10
28 SEP	1220	966	560	8.0	24.5	25.0	120	5.9	73	к65
10	1345	262	515	8.7	29.5	23.0	11	11.9	146	K100
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO	SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
DEC 18	K24	338	71	39	29	•7	6.1	91	31	•3
MAR 22	<4	205	44	23	27	.8	8.0	46	25	•2
APR 30	390	235	53	25	- 20	.6	6.9	87	11	•2
JUL 28	720	231	48	27	28	.8	6.6	75	13	.2
SEP 10	290	241	47	30	20	.6	6.9	48	11	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHORUS, ORTHO, DIS-SOLVED (MG/L AS P) (00671)
DEC 18	13	455	437	584	.24	.190	1.20	.110	.050	.090
MAR 22	14	347	309		1.8	.480		•350	.240	.270
APR 30	12	354	330	2870	.14	.230	2.40	•250	.110	.130
JUL 28	17	357	340	931	.74	.100	1.90	.410	.220	•290
SEP 10	14	406	311	287	<.10	.090	1.20	•130	•090	.080
DA	TI TE	ARSE TOT ME (UG AS (010	TAL SOL I/L (UG AS) AS	S- REC VED ERA /L (UG AS) AS	PAL BAR COV- DI ABLE SOL I/L (U BA) AS	IUM, TO S- RE VED EF G/L (U BA) AS	COV- DIABLE SOIG/L (UC) AS	LVED ER# G/L (UG	JM, CHF FAL MIU COV- DIS ABLE SOI G/L (UG CR) AS	M, S- VED (CR)
	15	40	4	3	100	89	1	<1	10	<10
	12	230	4	4	100	180	1	1	<10	<10
APR 30	12	200	5	4	200	65	1	<3	<10	<10
SEP 10		45	5	5	100	150	<1	<1	<10	<10

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued

DATE	COBA DIS SOLV (UG AS	LT, - ED /L CO)	OPPER TOTAL RECOV ERABI (UG/L AS CU 01042	COPPI L DIS- LE SOLI (UG,	ER, - VED /L CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 01045)	SOL (UG AS	S- VED /L FE)	LEA TOT REC ERA (UG AS (010	AĹ OV- BLE /L PB)	LEA DI SOL (UG AS (010	S- VED /L PB)	NES TOT REC	AL OV- BLE /L MN)	MANO NESI SOL' (UG, AS I	E, S- VED /L MN)
DEC 18		<3		8	2	430)	21		4		2		50		12
MAR 22		1	2	21	3	1300)	37		10		4 .		160		62
APR 30		<1	1	.2	3	3800)	9		7		2		370		<3
SEP 10		1		6	2	370)	4		<1		<1		50		2
	DATE	MERCU TOTA RECO ERAB (UG/ AS H	L M V- LE L G)	DIS- SOLVED (UG/L AS HG) 71890)	SELE NIUM TOTA (UG/ AS S	- N L S L (E) A	ELE- IUM, DIS- OLVED UG/L S SE)	ERA (UG	CAL COV- ABLE I/L AG)	SILV DI SOL (UG AS (010	S- VED /L AG)	ERA (UC	PAL COV- ABLE I/L ZN)	SOL (UG	S- VED /L ZN)	
	EC 18		•2	<.1		<1	<1		1		<1		30		7	
	AR 22		.1	<.1		<1	<1		<1		<1		60		46	
	PR 30		.1	<.1		<1	<1		1		<1		40		<12	
	EP 10		.2	<.1		1	<1		<1		<1	,	30		13	
!	DATE	TIM	E	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) 80030)	GROS ALPH SUSP TOTA (UG/ AS U-NA (8004	A, E L S L (F T) CS	ROSS BETA, DIS- BOLVED PCI/L AS B-137) (3515)	GRO BET SUS TOT (PCI AS CS-1	A, 3P. 3P. 2AL 2/L 3		A, S- VED I/L SR/ 90)	AS	A, SP. SAL SI/L SR/	22 DI SOLV RAD	ON HOD /L)	
	PR 30	120	0	<8.3	6	. 4	8.9		5.2		8.6		4.9		.12	
				DATE	TIM	M S E P (EDI- ENT, US- ENDED MG/L) 0154)	CHAR SU	IT, IS- IGE, IS- IDED DAY)	SIE	SP. VE AM. NER AN MM					
				MAR 22	123	n	60				96	i	1			
				APR 30	120		189	1	1530		99					
				DATE	TIM	ST F IN E TA (REAM- LOW, STAN- NEOUS CFS) 0061)	SPE CIF CON DUC ANC (UMH	I- TIC I- ET- IOS)	TEMP ATU (DEG (000	ER- RE C)	!	ı			
				DEC 18	154	0	475		735		.0					
				FEB 03	161	5	309		635		.0					
				MAR 22	123	0	E1450		550		.0	1				
				01 07 16 30 JUN	095 124 123 120	0 5	8170 13000 10700 3000		311 339 409 538		.0 1.0 6.0 2.5		I			
				09 JUL	115	0	1570		560	1	5.0					
				28 SEP	122	0	966		560	2	5.0					
				10	134	5	262		515	2	3.0					

05067500 MARSH RIVER NEAR SHELLY, MN

LOCATION.--Lat 47°24'45", long 96°45'50", in NELNWL sec.3, T.145 N., R.48 W., Norman County, Hydrologic Unit 09020107, near center of span on downstream truss of bridge, 3.8 mi (6.1 km) southeast of Shelly and 10 mi (16 km) upstream from mouth.

DRAINAGE AREA.--151 m1² (391 km²).

PERIOD OF RECORD. -- March 1944 to current year. Monthly discharge only for March 1944, published in WSP 1308.

GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 841.14 ft (356.379 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Oct. 1, 1965, nonrecording gage at datum 3.0 ft (0.914 m) higher.

REMARKS.--Records poor. Large part of high flow of Wild Rice River diverted into Marsh River basin at overflow . section 4.6 mi (5.6 km) east of Ada. Another diversion from Wild Rice River basin formed in 1947, 1.5 mi (2.4 km) southeast of Ada and diverted water at all stages 1947-51, after which it was closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent.

AVERAGE DISCHARGE.--38 years, 65.5 ft^3/s (1.855 m^3/s), 47,450 acre-ft/yr (58.5 hm^3/yr); median of yearly mean discharges, 35 ft^3/s (0.99 m^3/s), 25,400 acre-ft/yr (31 hm^3/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 4,880 ft³/s (138 m³/s) Apr. 19, 1979, gage height, 23.36 ft (7.120 m), from floodmark; no flow for many days most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,070 ft 3 /s (30.3 m 3 /s) Apr. 2, gage height, 13.06 ft (3.981 m); no flow Aug. 26 to Sept. 30.

		DISCHAF	RGE, IN CUB	IC FEET	PER SECO	ND, WATE: MEAN VAL	R YEAR OCTO JUES	DBER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.10 .20 .30 .50	12 11 9.8 9.0 8.4	4.4 4.4 3.7 3.2 2.8	.12 .12 .12 .12	.10 .10 .10 .10	.45 .45 .40 .40	756 875 732 462 421	13 13 12 6.6 7.2	4.8 4.1 3.2 2.4 1.1	.56 .36 .22 .22	.08 .06 .06 .12	.00 .00 .00
6 7 8 9	1.0 2.0 3.0 5.0 6.0	7.4 7.0 6.4 6.0 6.2	2.5 2.2 2.1 1.9 1.6	.14 .14 .14 .14	.12 .12 .12 .12	•35 •35 •35 •30	429 364 356 329 293	6.6 5.6 8.4 9.6	1.3 1.6 2.0 3.1 3.0	3.1 1.6 .36 .36 .28	.82 .32 .22 .15	.00 .00 .00
11 12 13 14 15	8.0 12 16 21 16	5.8 5.6 5.2 4.6 4.2	1.8 1.9 2.0 2.1 2.1	.07 .02 .02 .02	.14 .14 .14 .14	.30 .30 .30 .30	212 263 283 274 340	14 48 39 35 31	2.8 4.4 4.4 5.0 5.6	2.2 2.2 2.2 1.6 .89	.10 .08 .06 .04	.00 .00 .00
16 17 18 19 20	16 18 24 21 19	3.9 3.6 3.4 3.4 3.2	1.7 1.3 .89 .75	.04 .06 .08 .12	.15 .22 .22 .25 .28	.60 .96 1.6 20 25	785 980 678 415 236	30 32 48 84 75	5.2 4.8 4.4 3.4 2.8	1.6 .89 .45 2.2 2.1	.02 .02 .02 .04 .02	.00 .00 .00
21 22 23 24 25	24 23 21 21 20	3.2 3.4 3.6 3.6 3.7	.68 .56 .45 .36	.08 .10 .10 .10	•35 •45 •40 •40	30 40 35 25 22	178 147 97 62 45	60 45 33 26 19	2.2 2.2 1.6 1.0 2.1	1.9 .75 2.4 1.6 .50	.02 .02 .02 .02	.00 .00 .00
26 27 28 29 30 31	19 18 17 15 13	3.5 3.4 3.0 3.0 3.1	.32 .28 .25 .20 .14	.10 .17 .10 .10 .14	.50 .50 .45	20 20 98 460 609 781	34 24 19 14 16	16 13 9.8 7.7 5.4 5.0	2.1 1.6 1.2 1.3 .96	.32 .32 .25 .20 .12	.00 .00 .00 .00	.00 .00 .00
TOTAL MEAN MAX MIN AC-FT	393.00 12.7 24 .10 780	159.6 5.32 12 3.0 317	47.74 1.54 4.4 .10 95	3.00 .097 .17 .02 6.0	6.39 .23 .50 .10	2193.46 70.8 781 .30 4350	10119 337 980 14 20070	768.9 24.8 84 5.0 1530	85.66 2.86 5.6 .96 170	36.45 1.18 4.6 .10 72	3.82 .12 1.4 .00 7.6	.00 .000 .00

CAL YR 1981 TOTAL 2459.48 MEAN 6.74 MAX 628 MIN .00 AC-FT 4880 WTR YR 1982 TOTAL 13817.02 MEAN 37.9 MAX 980 MIN .00 AC-FT 27410

05069000 SAND HILL RIVER AT CLIMAX, MN

LOCATION.--Lat 47°36'43", long 96°48'52", in NEłNEł sec.30, T.148 N., R.48 W., Polk County, Hydrologic Unit 09020301, near center of span on downstream side of bridge on U.S. Highway 75 in Climax and 3.7 mi (6.0 km) upstream from mouth.

DRAINAGE AREA.--426 mi^2 (1,103 km^2).

CAL YR 1981 TOTAL 11020.3 WTR YR 1982 TOTAL 23793.1

MEAN 30.2 MEAN 65.2

PERIOD OF RECORD.--March 1943 to current year (winter records incomplete prior to 1947). Monthly discharge only for some periods, published in WSP 1308 and 1728.

REVISED RECORDS.--WSP 1388: 1943(M), 1944, 1947(M). WSP 1728: 1951(M), 1960 (Average discharge).

GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 820.10 ft (249.966 m) National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Oct. 1, 1966, nonrecording gage at site 3.2 mi (5.1 km) upstream at datum 12.78 ft (3.90 m) higher. Nonrecording gage and crest-stage gage at site 3.2 mi (5.1 km) upstream at datum 12.78 ft (3.90 m) higher (used as supplementary gage during periods of backwater from the Red River).

REMARKS .-- Records good except those for winter period, which are poor.

AVERAGE DISCHARGE.--36 years (water years 1947-82), 69.5 ft 3 /s (1.968 m 3 /s), 50,350 acre-ft/yr (62.1 hm 3 /yr); median of yearly mean discharges, 51 ft 3 /s (1.44 m 3 /s), 36,900 acre-ft/yr (45 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,560 ft³/s (129 m³/s) Apr. 14, 1965, gage height, 17.81 ft (5.428 m), site and datum then in use; maximum gage height, 32.79 ft (9.994 m) Apr. 23, 1979, from floodmark (backwater from Red River of the North); minimum daily discharge, 1.0 ft³/s (0.03 m³/s) Jan. 17, 18, 1962.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 820 ft 3 /s (23.2 m 3 /s) Apr. 15, gage height, 10.00 ft (3.048 m); maximum gage height, 14.17 ft (4.319 m) Apr. 9 (backwater from ice); minimum daily discharge, 5.5 ft 3 /s (0.16 m 3 /s) Feb. 1-4; minimum gage height, 3.90 ft (1.189 m) Feb. 1, 3.

		DISCHAR	BE, IN CU	JBIC FEET	PER SECOND), WATER EAN VALU	YEAR OCTO	BER 1981	TO SEPTEM	BER 1982	,	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	18 15 18 21 22	46 45 44 40 37	31 32 28 30 35	15 15 15 15 14	5.5 5.5 5.5 5.5 15	10 10 10 10	450 440 410 390 370	107 96 95 115 107	61 56 51 45 39	24 21 2 0 30 50	23 22 19 17 16	9.3 8.9 9.1 8.9 8.7
6 7 8 9 10	29 32 32 40 49	35 34 33 32 34	35 30 26 25 23	14 14 14 14 14	14 13 12 12	10 10 10 10 10	350 330 320 310 300	95 86 81 77 73	37 42 47 51 55	71 47 44 52 60	15 14 13 13	8.4 8.2 8.2 8.0
11 12 13 14 15	49 55 68 86 90	36 40 38 35 32	22 22 22 22 21	13 13 13 13	11 11 11 11	10 11 11 12 14	350 450 600 770 800	95 113 110 105 100	53 47 42 39 36	61 60 51 47 46	10 11 11 11	8.2 8.9 10 20
16 17 18 19 20	90 90 99 98 90	34 36 34 32 29	21 21 20 20 19	13 12 12 12 12	11 11 10 10	17 21 30 40 50	645 447 372 348 304	120 186 340 384 370	32 32 29 25 25	43 47 52 45 43	11 10 12 19 14	11 11 14 12
21 22 23 24 25	87 90 82 78 72	27 26 38 39 43	19 18 18 18	12 11 11 11 10	10 10 10 10	46 42 38 34 32	259 230 199 174 160	304 240 193 167 142	25 22 20 21 22	44 42 46 45 39	9.8 11 11	9.1 9.8 9.8 9.5
26 27 28 29 30 31	67 60 60 55 52 51	31 34 33 32 32	17 17 16 16 16 15	10 10 9.0 8.0 7.0 6.0	10 10 10 	30 40 70 150 300 450	148 139 130 120 110	128 118 100 88 75 67	21 20 25 25 25 	36 34 31 31 28 25	10 9.5 9.1 9.5 8.9 9.3	10 10 10 11 14
TOTAL MEAN MAX MIN AC-FT	1845 59•5 99 15 3660	1061 35.4 46 26 2100	692 22.3 35 15 1370	375.0 12.1 15 6.0 744	287.0 10.3 15 5.5 569	1548 49.9 450 10 3070	10425 348 800 110 20680	4477 144 384 67 8880	1070 35•7 61 20 2120	1315 42.4 71 20 2610	393.1 12.7 23 8.9 780	305.0 10.2 20 8.0 605

MIN 7.7 MIN 5.5

AC-FT

MAX 800

05074000 LOWER RED LAKE NEAR RED LAKE, MN

- LOCATION.--Lat 47°57'27", long 95°16'34", in SW&NW& sec.28, T.152 N., R.36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank just upstream from dam at outlet, 13 mi (21 km) northwest of village of Red Lake.
- DRAINAGE AREA.--1,950 m1² (5,050 km²), approximately.
- PERIOD OF RECORD.--June 1930 to November 1932 (published as Red Lake at Redby), May 1933 to current year (published as Red Lake near Red Lake 1933-40); records on Upper Red Lake published as Red Lake at Waskish, April 1930 to September 1933, all in reports of Geological Survey. October 1921 to September 1929 gage heights at Redby and on Upper Red Lake at Waskish in files of Minnesota Department of Conservation (fragmentary).
- GAGE.--Water-stage recorder. Datum of gage is 1,169.00 ft (356.311 m), adjustment of 1912 (levels by Corps of Engineers); gage readings have been reduced to elevations based on adjustment of 1912. May 1933 to Sept. 6, 1934, nonrecording gage at same site and datum. Nonrecording gages at Waskish and Redby at datum 69.00 ft (21.031 m) lower.
- REMARKS .-- Water level subject to fluctuation caused by change in direction and velocity of wind and by seiches.
- EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 1178.53 ft (359.216 m) June 25, 1950; minimum recorded, 1169.80 ft (356.555 m) Nov. 20, 1936.
- EXTREMES FOR CURRENT YEAR.--Maximum gage height, 1175.94 ft (358.427 m) July 5; maximum daily, 1175.06 ft (358.158 m) May 20; minimum, 1173.52 ft (357.689 m) Nov. 10, 30; minimum daily, 1173.76 ft (357.762 m) Mar. 6.

MONTHEND ELEVATION, IN FEET, OCTOBER 1981 TO SEPTEMBER 1982

Oct. 31 1173.82	Feb. 28 1173.81	June 30 1174.64
Nov. 30 1173.80	Mar. 31 1173.85	July 31 1174.77
Dec. 31 1173.92	Apr. 30 1174.50	Aug. 31 1174.29
Jan. 30 1173.85	May 31 1174.78	Sept.301173.92

NOTE .-- Mean daily gage heights are available.

05074500 RED LAKE RIVER NEAR RED LAKE, MN

LOCATION.--Lat 47°57'27", long 95°16'35", in SW&NW& sec.28, T.152 N., R.36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank 50 ft (15 m) downstream from dam at outlet of Lower Red Lake and 13 mi (21 km) northwest of village of Red Lake.

DRAINAGE AREA.--1,950 mi² (5,050 km²), approximately.

PERIOD OF RECORD.--May 1933 to current year. Monthly discharge only for May 1933, published in WSP 1308.

GAGE.--Water-stage recorder. Datum of gage is 1,167.00 ft (355.702 m), adjustment of 1912 (levels by Corps of Engineers). Prior to Sept. 7, 1934, nonrecording gage at site 50 ft (15 m) upstream at datum 2.00 ft (0.610 m) higher. Sept. 7, 1934, to Nov. 26, 1951, water-stage recorder at present site at datum 2.00 ft (0.610 m) higher.

REMARKS .-- Records fair. Flow completely regulated by outlet dam on Lower Red Lake.

AVERAGE DISCHARGE.--49 years, 489 ft 3 /s (13.85 m 3 /s), 354,300 acre-ft/yr (437 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 3,600 ft 3 /s (102 m 3 /s) June 25, 1950, gage height, 11.19 ft (3.411 m), affected by seiches and backwater from aquatic vegetation, present datum, from rating curve extended above 1,400 ft 3 /s (39.6 m 3 /s); no flow at times.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,170 ft 3 /s (33.1 m 3 /s) July 4, gage height, 5.94 ft (1.811 m); maximum gage height, 6.03 ft (1.838 m) July 24; minimum daily discharge, 80 ft 3 /s (2.27 m 3 /s) Apr. 11.

		DISCHARGE	, IN C	UBIC FEET	PER SECON	ID, WATER MEAN VALU	YEAR OCTO	BER 1981	TO SEPTE	1BER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	375 360 360 3 7 2 375	676 669 669 673 673	676 662 680 680 680	650 650 650 650	660 660 660 660	680 680 680 680	140 89 167 140 119	90 87 84 243 519	1010 999 992 984 976	934 930 942 946 965	1050 1050 1050 1040 1040	904 900 896 896 900
6 7 8 9 10	508 709 727 730 738	669 666 666 651 644	680 680 680 680 680	650 650 650 650	660 660 660 660	680 680 690 690	104 84 84 84 99	542 542 525 525 539	972 988 976 984 972	961 961 949 968 968	1040 1030 1020 1010 1000	893 885 882 878 878
11 12 13 14 15	730 727 730 727 723	644 640 640 644 648	680 680 680 600 550	650 650 650 650	670 670 670 670 670	690 690 690 690	80 90 94 107 128	56 7 560 550 550 560	961 961 953 949 953	961 961 961 957 984	992 980 980 976 972	885 893 893 900 889
16 17 18 19 20	720 727 730 712 712	648 644 644 644 634	550 550 550 550 550	650 650 650 650	670 670 670 670 670	690 690 690 700 700	143 128 109 102 109	600 700 900 1000 1050	946 953 946 942 942	996 996 972 972 976	972 968 972 968 957	874 882 874 870 863
21 22 23 24 25	709 702 694 680 684	623 616 612 609 612	550 550 600 650 650	650 650 650 650	670 670 680 680 680	700 698 669 666 658	111 116 114 109 101	1050 1050 1050 1050 1040	930 927 927 934 927	992 988 984 1040 1040	957 961 953 946 934	859 856 856 867 852
26 27 28 29 30 31	680 687 680 680 676 680	620 630 648 655 626	650 650 650 650 650	650 650 660 660 660	680 680 680 	623 616 588 553 364 138	94 89 92 84 96	1040 1030 1020 1030 1020	927 927 946 946 938	1050 1050 1050 1060 1050 1040	927 923 915 911 908 904	848 848 878 885 874
TOTAL MEAN MAX MIN AC-FT	20044 647 738 360 39760	645 676 609	19618 633 680 550 38910	20190 651 660 650 40050	18720 669 680 660 37130	20023 646 700 138 39720	3206 107 167 80 6360	22133 714 1050 84 43900	28688 956 1010 927 56900	30604 987 1060 930 60700	30306 978 1050 904 60110	26358 879 904 848 52280

CAL YR 1981 TOTAL 108177 MEAN 296 MAX 738 MIN 34 AC-FT 214600 WTR YR 1982 TOTAL 259227 MEAN 710 MAX 1060 MIN 80 AC-FT 514200

05075000 RED LAKE RIVER AT HIGH LANDING, NEAR GOODRIDGE, MN

LOCATION.--Lat 48°02'34", long 95°48'28", in NW&NW& sec.28, T.153 N., R.40 W., Pennington County, Hydrologic Unit 09020303, on left bank 50 ft (15 m) upstream from highway bridge at High Landing, 7 mi (11 km) south of Goodridge and 33 mi (53 km) upstream from Thief River.

DRAINAGE AREA.--2,300 mi² (6,000 km²), approximately.

PERIOD OF RECORD. -- September 1929 to current year. Prior to October 1930, published as "at Kratka".

GAGE.--Water-stage recorder. Datum of gage is 1,141.57 ft (347.951 m), adjustment of 1912 (levels by Corps of Engineers). See WSP 1308 or 1738 for history of changes prior to Oct. 1, 1949.

REMARKS .-- Records good except those for winter period, which are fair. Flow regulated by outlet dam on Lower Red

AVERAGE DISCHARGE.--53 years, 543 ft 3 /s (15.38 m 3 /s), 393,400 acre-ft/yr (485 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,060 ft³/s (115 m³/s) July 7, 1975, gage height, 13.39 ft (4.081 m); maximum gage height, 13.44 ft (4.097 m) July 3, 1975; no flow during infrequent periods in 1931-34, 1936-37.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,800 ft 3 /s (51.0 m 3 /s) Apr. 15, gage height, 10.37 ft (3.161 m) (backwater from ice); minimum daily, 304 ft 3 /s (8.61 m 3 /s) May 3; minimum gage height, 3.26 ft (0.994 m) May 3.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		DIBURAN	JE, IN CO	DIO FEEL 1	ren seud	MEAN VALU	JES	100EK 1901	TO SEFTE	MDER 1902		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	527 520 502 505 517	822 826 826 824 813	818 762 787 727 746	680 680 680 680	680 680 680 680	690 690 690 690	500 500 420 440 440	328 307 304 718 1100	1160 1150 1140 1120 1100	1020 1010 996 980 1070	1200 1180 1170 1140 1110	926 918 912 918 912
6 7 8 9 10	540 611 762 830 858	809 811 803 803 786	760 780 800 810 810	680 680 680 680 680	680 680 680 680 680	690 690 690 690	460 480 500 540 580	1210 1090 1030 984 975	1100 1110 1110 1130 1180	1090 1060 1030 1030 1040	1100 1080 1060 1030 1030	920 927 923 916 916
11 12 13 14 15	870 886 887 873 866	785 795 793 788 795	780 750 730 720 700	680 680 680 680 680	680 680 680 680	700 700 700 700 700	640 740 860 1100 1610	1100 1130 1100 1080 1120	1160 1130 1110 1090 1080	1030 1010 1000 1000 1000	1020 1020 1010 1000 996	919 921 936 941 943
16 17 18 19 20	860 860 862 864 858	813 810 813 817 812	700 690 680 680 680	680 680 680 680	680 680 680 680 680	700 700 700 700 700	1260 1030 884 809 739	1100 1210 1400 1540 1590	1070 1060 1060 1050 1050	1040 1080 1070 1070 1060	985 988 985 972 965	947 952 945 937 935
21 22 23 24 25	854 850 838 837 822	865 882 789 774 776	680 680 680 680 680	680 680 680 680	690 690 690 690	700 700 700 700 700	712 694 671 634 578	1580 1540 1500 1450 1410	1040 1040 1040 1020 1010	1120 1150 1120 1250 1440	962 975 978 970 962	939 941 937 940 948
26 27 28 29 30 31	832 830 842 851 848 826	784 709 754 794 755	680 680 680 680 680	680 680 680 680 680	690 690 690 	700 700 720 820 1000 900	511 461 424 392 349	1380 1350 1310 1270 1220 1190	1010 996 1010 1060 1040	1420 1350 1290 1270 1260 1230	948 944 942 936 926 929	949 947 1010 1030 1020
TOTAL MEAN MAX MIN AC-FT	24088 777 887 502 47780	24026 801 882 709 47660	22390 722 818 680 44410	21080 680 680 680 41810	19120 683 690 680 37920	22240 717 1000 690 44110	19958 665 1610 349 39590	35616 1149 1590 304 70640	32426 1081 1180 996 64320	34586 1116 1440 980 68600	31513 1017 1200 926 62510	28225 941 1030 912 55980
CAL YR WTR YR	1981 TOT 1982 TOT		MEAN MEAN		887 1610	MIN 60 MIN 304	AC-FT AC-FT	248300 625300				

05076000 THIEF RIVER NEAR THIEF RIVER FALLS, MN

LOCATION.--Lat 48°11'08", long 96°10'11", in NW\SW\sec.3, T.154 N., R.43 W., Marshall County, Hydrologic Unit 09020304, on right bank, 0.2 mi (0.3 km) upstream from highway bridge, 5 mi (8 km) north of city of Thief River Falls, 7 mi (11 km) upstream from mouth, and 9 mi (14 km) downstream from Mud Lake National Wildlife Refuge.

DRAINAGE AREA.--959 mi² (2,484 km²).

PERIOD OF RECORD.--July 1909 to September 1917, April 1920 to September 1921, October 1922 to September 1924, October 1928 to September 1981. Monthly discharge only for some periods, annual maximums for water years 1919, 1922, 1925, 1926, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station March to September 1982.

REVISED RECORDS.--WSP 925: Drainage area. WSP 1308: 1917(M), 1924(M), 1929(M), 1931-33(M), 1935(M), 1937(M).

GAGE.--Water-stage recorder and control of grouted boulders. Datum of gage is 1,112.33 ft (339.038 m) National Geodetic Vertical Datum of 1929 (levels by Minnesota Department of Transportation). Prior to May 4, 1939, nonrecording gages at same site and datum.

REMARKS .-- Records good except those for winter period, which are poor. Some regulation by Thief and Mud Lakes.

AVERAGE DISCHARGE.--64 years (water years 1910-1917, 1921, 1923-1924, 1929-1981), 158 ft 3 /s (4.475 m 3 /s), 114,500 acre-ft/yr (141 hm 3 /yr); median of yearly mean discharges, 106 ft 3 /s (3.00 m 3 /s), 76,800 acre-ft/yr (95 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,610 ft³/s (159 m³/s) May 13, 1950, gage height, 17.38 ft (5.297 m); no flow at times in some years.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 2,130 ft^3/s (60.3 m^3/s) May 4, gage height, 11.27 ft (3.435 m); maximum gage height, 12.49 ft (3.807 m) Apr. 14 (backwater from ice); no flow on several days.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

						HILAI VALO	пр					
YAG	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5						.00 .00 .00 .00	370 340 320 300 280	869 841 879 1840 1450	345 316 294 195 173	97 88 66 54 142	286 269 262 255 247	21 23 22 20 19
6 7 8 9 10						.00 .00 .00 .00	260 250 240 230 220	1210 879 822 775 759	170 171 171 185 197	238 211 170 154 153	213 193 190 189 189	18 18 17 17
11 12 13 14 15						.00 .00 .00 .01	3 0 0 600 900 1150 1390	808 828 815 779 759	196 191 185 181 176	137 124 142 150 157	187 184 183 180 149	9.5 6.6 4.9 3.9
16 17 18 19 20						.04 .06 .08 .10	1620 1890 1890 1820 1660	805 869 978 1 0 00 978	171 166 164 162 160	140 179 240 212 213	120 116 117 118 114	3.6 3.4 2.9 2.6 2.1
21 22 23 24 25					.00	.30 .70 1.3 1.4 1.5	1540 1480 1420 1320 1170	926 858 739 680 642	156 106 97 92 91	308 277 238 235 220	112 106 102 101 98	1.8 1.9 1.9 1.8 1.5
26 27 28 29 30 31					.00 .00 .00	1.5 1.5 1.5 10 100 400	1110 1040 992 933 889	610 509 472 459 451 436	89 88 90 98 98	208 197 181 225 293 305	96 92 69 41 28 23	1.3 1.5 3.1 3.6 3.2
TOTAL MEAN MAX MIN AC-FT						520.21 16.8 400 .00 1030	27924 931 1890 220 55390	25725 830 1840 436 51030	4974 166 345 88 9870	5754 186 308 54 11410	4629 149 286 23 9180	267.1 8.90 23 1.3 530

05078000 CLEARWATER RIVER AT PLUMMER, MN

LOCATION.--Lat 47°55'24", long 96°02'46", in SE\SW\ sec. 4, T.151 N., R.42 W., Red Lake County, Hydrologic Unit 09020305, on right bank 200 ft (61 m) downstream from Soo Line Railroad bridge, 300 ft (91 m) downstream from bridge on U.S. Highway 59, 0.9 mi (1.4 km) northwest of railroad depot in Plummer, and 8 mi (13 km) upstream from Hill River.

DRAINAGE AREA.--512 mi^2 (1,326 km^2).

PERIOD OF RECORD.--April 1939 to September 1979. October 1979 to February 1982, annual maximums only. March to September 1982.

GAGE.--Water-stage recorder. Datum of gage is 1,099.12 ft (335.012 m), adjustment of 1912 (levels by Corps of Engineers). Prior to Nov. 10, 1939, nonrecording gage at site 100 ft (30 m) upstream at same datum.

REMARKS.--Records good except those for winter period, which are poor. Since 1968, undetermined amounts of water diverted for the flooding of wild rice paddies upstream.

AVERAGE DISCHARGE.--40 years (water years 1940-79), 179 ft³/s (5.069 m³/s), 129,700 acre-ft/yr (160 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 3,940 ft 3 /s (112 m 3 /s) Apr. 25, 1979, gage height, 12.31 ft (3.752 m); maximum gage height, 12.37 ft (3.770 m) Apr. 18, 1979 (backwater from ice); minimum discharge, 2.5 ft 3 /s (0.071 m 3 /s) May 16, 17, 1977, gage height, 1.71 ft (0.521 m).

EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 500 ft³/s (14.2 m³/s) and maximum (*):

Date	Time	Disch (ft ³ /s)	arge (m ³ /s)	Gage (ft)	height (m)	Date	Time	Disch (ft ³ /s)	arge (m ³ /s)	Gage h (ft)	neight (m)
Mar. 31 Apr. 16 May 5	1030 1700 2330	957 *1700 92 7	27.1 48.1 26.3	a*9.20 8.71 6.67	2.804 2.655 2.033	May 12 May 20 July 17 July 25	0530 0230 0900 2000	574 1040 519 516	16.3 29.5 14.7 14.6	5.35 7.04 5.09 5.09	1.631 2.146 1.551 1.551

Backwater from ice.

Minimum discharge (March to September 1982), 33 ft 3 /s (0.93 m 3 /s) Aug. 30 to Sept. 3 and Sept. 9, 10; minimum gage height, 2.40 ft (0.732 m) Sept. 9, 10.

		DISCHARGE	E, IN CUE	BIC FEET		, WATER EAN VALU	YEAR OCTOB ES	ER 1981 '	TO SEPTEM	MBER 1982		,
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5						86 83 81 80 110	850 750 700 650 600	223 212 203 576 884	227 208 188 190 185	193 175 166 167 292	312 273 239 225 206	33 33 35 39 37
6 7 8 9 10						100 70 80 82 81	560 540 520 500 500	858 572 436 357 338	176 182 178 167 210	326 251 220 207 224	198 192 166 144 135	35 36 36 34 37
11 12 13 14 15						80 80 80 80 80	500 600 800 970 1150	448 569 514 466 543	211 193 172 152 123	233 226 211 188 176	160 138 119 111 106	37 40 41 44 48
16 17 18 19 20						80 79 79 79 79	1590 1490 1260 1230 1210	713 743 901 1010 1030	101 101 98 98 109	262 466 350 299 268	88 75 82 73 59	51 59 59 59 53
21 22 23 24 25					160 200	79 79 79 80 80	1150 1030 910 799 697	936 786 632 533 459	114 113 117 126 129	400 462 408 372 486	55 55 53 45	50 48 47 42 42
26 27 28 29 30 31					160 120 100 	80 82 100 250 500 900	608 470 344 286 230	395 382 355 323 285 260	128 128 136 211 221	462 363 296 298 333 307	43 40 37 36 33 33	42 47 53 64 88
TOTAL MEAN MAX MIN AC-FT						3958 128 900 70 7850	23494 783 1590 230 46600	16942 547 1030 203 33600	4692 156 227 98 9310	9087 293 486 166 18020	3580 115 312 33 7100	1369 45•6 88 33 2720

05078230 LOST RIVER AT OKLEE, MN

LOCATION.--Lat 47°50'35", long 95°51'30", in SELNEL sec.2, T.150 N., R.41 W., Red Lake County, Hydrologic Unit 09020305, on downstream side of bridge on State Highway 222 at northwest edge of Oklee, 12 mi (19 km) upstream from mouth.

DRAINAGE AREA. -- 266 mi² (689 km²).

PERIOD OF RECORD. -- April 1960 to September 1981, February to September 1982. Monthly and daily figures for Apr. 1, 1960, to June 30, 1960, published in WSP 2113.

GAGE.--Nonrecording gage and crest-stage gage. Datum of gage is 1,126.94 ft (343.391 m), adjustment of 1912 (levels by Corps of Engineers). Prior to Sept. 9, 1960, reference points at same site at datum 8.00 ft (2.438 m) higher. Sept. 9, 1960, to Sept. 30, 1964, nonrecording gage at same site at datum 8.00 ft (2.438 m) higher.

REMARKS.--Records fair except those for the winter period and those for period of indefinite stage-discharge relation (Aug. 27 to Sept. 30), which are poor.

AVERAGE DISCHARGE.--21 years (water years 1961-81), 75.9 ft³/s (2.149 m³/s), 54,990 acre-ft/yr (67.8 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,210 ft³/s (90.9 m³/s) Apr. 11, 1969, gage height, 14.91 ft (4.545 m), from floodmark; maximum gage height, 16.72 ft (5.096 m), present datum, May 24, 1962; no flow Feb. 16 to Mar. 21, 1963, Feb. 15 to Mar. 2, 1964, Jan. 6 to Mar. 11, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since at least 1897, 18.39 ft (5.605 m) present datum, Apr. 21, 1950 from floodmarks, discharge, 2,790 ft³/s (79.0 m³/s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,320 ft³/s (37.4 m³/s) Apr. 16, gage height, 12.04 ft (3.670 m); maximum gage height, 13.01 ft (3.965 m) Apr. 1, from high-water mark (backwater from ice); minimum daily discharge (February to September), 1.3 ft³/s (0.037 m³/s) Sept. 11.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5						8.0 8.0 8.5 8.5	800 700 600 550 500	123 111 110 178 446	66 51 49 44 40	41 27 20 15 32	44 40 30 24 18	3.5 3.0 2.6 2.3 2.0
6 7 8 9 10						8.5 9.0 9.0 9.0	490 480 470 460 450	274 214 174 133 139	40 48 46 57 73	61 65 44 39 69	9.9 7.8 6.7 5.4	1.8 1.7 1.6 1.5
11 12 13 14 15						9.5 9.5 9.5 10	450 600 900 1110 1120	555 444 312 257 321	64 62 47 34 30	61 44 32 27 22	6.2 5.8 5.2 5.0	1.3 3.0 2.6 2.2 2.0
16 17 18 19 20						12 13 25 25 20	1080 846 638 521 410	300 549 829 615 495	26 24 22 21 22	27 263 131 83 61	4.4 3.8 3.8 4.0 4.2	5.0 4.5 4.0 3.5 3.0
21 22 23 24 25					7.5 7.5	19 19 19 19 20	455 279 257 237 204	387 281 218 178 170	22 19 20 24 22	534 419 249 155 161	5.6 5.8 7.1 8.0	2.7 2.4 2.1 1.9 1.7
26 27 28 29 30 31					7.5 7.5 8.0	20 21 23 30 100 900	175 168 152 142 132	139 122 103 95 83 76	19 11 11 33 58	93 62 44 44 61 53	8.6 7.0 6.0 5.0 4.5 4.0	1.6 3.0 7.0 10
TOTAL MEAN MAX MIN AC-FT						1420.0 45.8 900 8.0 2820	15376 513 1120 132 30500	8431 272 829 76 16720	1105 36.8 73 11 2190	3039 98.0 534 15 6030	318.6 10.3 44 3.8 632	94.9 3.16 10 1.3 188

05078500 CLEARWATER RIVER AT RED LAKE FALLS, MN

LOCATION.--Lat 47°53'15", long 96°16'25", in NW&NE& sec.22, T.151 N., R.44 W., Red Lake County, Hydrologic Unit 09020305, on left bank 40 ft (12 m) downstream from Great Northern Railroad bridge in Red Lake Falls, 1.4 mi (2.3 km) upstream from mouth, and 3 mi (5 km) downstream from Badger Creek.

DRAINAGE AREA.--1,370 mi² (3,550 km²), approximately.

PERIOD OF RECORD.--June 1909 to September 1917, October 1934 to September 1981. Monthly discharge only for October, November, 1934, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station. March to September 1982.

REVISED RECORDS.--WSP 355: 1911-12. WSP 1438: 1910-11, 1917(M).

GAGE.--Water-stage recorder. Datum of gage is 949.49 ft (289.405 m), adjustment of 1912 (levels by Corps of Engineers). Prior to Sept. 12, 1911, nonrecording gage at site 0.5 mi (0.8 km) upstream and Sept. 12, 1911, to Sept. 30, 1917, nonrecording gage at site 40 ft (12 m) upstream at different datum.

REMARKS. -- Records good except those for winter period, which are poor.

AVERAGE DISCHARGE.--55 years (water years 1910-17, 1935-81), 315 ft³/s (8.921 m³/s), 228,200 acre-ft/yr (281 hm³/yr); median of yearly mean discharges, 283 ft³/s (8.01 m³/s), 205,000 acre-ft/yr (253 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 10,300 ft³/s (292 m³/s) Apr. 25, 1979, gage height, 12.38 ft (3.773 m); maximum gage height observed, 17.5 ft (5.344 m) Apr. 5, 1913, site and datum then in use (backwater from ice); no flow Sept. 15, 1936, Sept. 14, 1939, Aug. 19-22, 1940.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,160 ft³/s (118 m³/s) Apr. 15, gage height, 7.76 ft (2.365 m); maximum gage height, 10,70 ft (3.261 m) Mar. 31 (backwater from ice); minimum discharge (March to September 1982), 29 ft³/s (0.82 m³/s) Sept. 11, gage height, 1.78 ft (0.543 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	YAM	JUN	JUL	AUG	SEP
1 2 3 4 5						120 110 98 95 97	2940 2890 2630 2430 2230	635 596 561 806 1540	514 455 410 380 368	28 2 23 9 20 9 20 5 26 4	431 416 345 310 275	40 36 36 36 38
6 7 8 9						150 125 80 68 92	2040 1850 1670 1510 1370	1700 1300 972 809 725	351 364 358 361 392	420 372 299 273 259	266 251 230 200 173	38 36 36 34 37
11 12 13 14 15						93 93 94 94	1380 1550 2060 2810 3520	914 1480 1330 1140 1140	452 412 361 312 267	284 290 263 266 224	168 187 165 147 142	31 38 40 43 41
16 17 18 19 20						110 150 200 300 200	3920 3840 3110 2720 2460	1470 1680 2200 2410 2170	221 197 183 175 170	210 673 709 509 417	135 116 101 102 92	52 58 67 65 67
21 22 23 24 25						190 190 200 200 210	2220 2010 1780 1600 1400	1870 1590 1320 1100 955	175 176 178 181 188	1010 1250 921 688 620	79 77 74 73 66	64 60 55 54 46
26 27 28 29 30 31						210 210 210 700 2700 3400	1250 1090 901 791 688	840 750 719 644 599 549	191 183 189 212 281	653 546 445 421 443 461	62 59 55 49 41 41	41 44 52 64 71
TOTAL MEAN MAX MIN AC-FT						10882 351 3400 68 21580	62660 2089 3920 688 124300	36514 1178 2410 549 72430	8657 289 514 170 17170	14125 456 1250 205 28020	4928 159 431 41 9770	1420 47.3 71 31 2820

05079000 RED LAKE RIVER AT CROOKSTON, MN

LOCATION.--Lat 47°46'32", long 96°36'33", in SW&SW& sec.30, T.150 N., R.46 W., Polk County, Hydrologic Unit 09020303, on right bank at downstream side of Sargent Street bridge in Crookston, 0.3 mi (0.5 km) downstream from Interstate Power Co.'s dam, 0.6 mi (1.0 km) downstream from bridge on U.S. Highway 75, and 53 mi (85 km) upstream from mouth.

DRAINAGE AREA. -- 5,280 mi² (13,680 km²), approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1901 to current year. Monthly discharge only for some periods, published in WSP 1308.
Figures of daily discharge for Apr. 3-30, 1904, published in WSP 130, have been found unreliable and should not be used.

REVISED RECORDS.--WSP 1115: 1906, 1915-16, 1919-20, 1922, 1925, 1927, 1929. WSP 1308: 1916(M), 1919(M), 1928(M), 1930(M). See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 832.72 ft (253.813 m) National Geodetic Vertical Datum of 1929. May 18, 1901, to June 30, 1909, nonrecording gage at bridge 300 ft (91 m) upstream at same datum. July 1, 1909, to Sept. 25, 1911, nonrecording gage, Sept. 26, 1911, to Sept. 30, 1919, water-stage recorder, Oct. 1, 1919, to Sept. 30, 1930, nonrecording gage, at present site and datum.

REMARKS.--Records good except those for winter period, which are fair. Diurnal fluctuation prior to 1975 caused by powerplant 1,000 ft (300 m) upstream. Runoff from 1,950 mi² (5,050 km²) in the headwaters of Red Lake River is completely controlled by dam at outlet of Lower Red Lake. Flow partially affected by occasional regulation at Thief and Mud Lakes in Thief River basin (see station 05076000).

AVERAGE DISCHARGE.--81 years, 1,122 ft3/s (31.78 m3/s), 812,900 acre-ft/yr (1,000 hm3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,400 ft 3 /s (804 m 3 /s) Apr. 12, 1969, gage height, 27.33 ft (8.330 m); no flow for part of July 13, 1960 (caused by regulation of powerplant upstream).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 9,320 ft 3 /s (264 m 3 /s) Apr. 17, gage height, 16.12 ft (4.913 m); maximum gage height, 18.52 ft (5.645 m) Apr. 1 (backwater from ice); minimum discharge, 597 ft 3 /s (16.9 m 3 /s) Dec. 7, gage height, 3.86 ft (1.177 m).

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY 1 2 3	ост 932 1670	NOV	DEC	7.437								
1 2				JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3 4 5	1970 1690 1550	1270 1240 1220 1210 1160	1070 1060 1030 998 860	1000 1000 1000 1000 1000	960 950 950 950 940	870 870 860 860 850	5600 5000 4500 4200 4000	2200 2100 1960 2050 4770	2300 2170 2030 1960 1870	1560 1510 1430 1380 1490	2020 1960 1900 1720 1700	1070 991 1010 992 924
6 7 8 9	1710 2120 2020 1760 1750	1190 1150 1150 1150 1150	688 765 780 840 900	1000 1000 1000 990 990	940 940 940 930 930	850 840 830 830 820	3700 3400 3300 3300 3300	4760 4340 3460 2990 2770	1790 1810 1810 1850 1960	2030 2110 1970 1800 1700	1680 1610 1530 1460 1400	958 1050 923 943 981
11 12 13 14	1730 1790 2510 3250 2770	1140 1120 1120 1120 1130	960 980 1000 1000	990 990 990 990 990	930 920 920 920 910	820 810 810 800 800	3400 3500 3800 4300 7510	2720 3190 3580 3360 3230	1970 2020 1920 1850 1760	1670 1640 1580 1540 1540	1350 1360 1370 1320 1310	1010 930 1040 1010 986
16 17 18 19 20	2240 1950 1890 1940 1860	1150 1160 1210 1230 1200	1000 1000 1000 1000 1000	980 980 970 970 970	910 910 900 900 900	800 820 850 900 900	8690 8860 7310 6800 5580	3600 4370 4660 5480 5280	1670 1600 1550 1520 1520	1480 1 6 60 3160 2800 2330	1320 1230 1170 1180 1180	962 992 1050 989 985
21 22 23 24 25	1750 1650 1550 1440 1400	910 916 987 1150 1300	1000 1000 1000 1000 1000	970 970 970 970 970	890 890 890 880 880	900 900 900 900 900	5060 4620 4330 4000 3700	4880 4420 4000 3550 3270	1490 1490 1460 1450 1430	2410 3080 2840 2470 2200	1180 1170 1230 1130 1140	984 988 987 955 944
26 27 28 29 30 31	1360 1330 1310 1300 1310 1310	1210 1120 1030 954 875	1000 1000 1000 1000 1000	970 970 970 970 970 960	880 870 870 	920 940 980 1150 2000 3500	3380 3140 2940 2610 2380	3070 2860 2730 2610 2480 2400	1380 1390 1400 1470 1460	2240 2340 2170 2030 2020 2030	1110 1110 1070 1060 1030 995	1000 964 1010 1080 1060
	54812 1768 3250 932 108700	33922 1131 1300 875 67280	29931 966 1070 688 59370	30460 983 1000 960 60420	25600 914 960 870 50780	30780 993 3500 800 61050	136210 4540 8860 2380 270200	107140 3456 5480 1960 212500	51350 1712 2300 1380 101900	62210 2007 3160 1380 123400	41995 1355 2020 995 83300	29768 992 1080 923 59040

CAL YR 1981 TOTAL 284619 MEAN 780 MAX 6560 MIN 114 AC-FT 564500 WTR YR 1982 TOTAL 634178 MEAN 1737 MAX 8860 MIN 688 AC-FT 1258000

NOTE .-- No gage-height record Jan. 25 to Mar. 15.

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1974-76, 1979 to current year.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: October 1980 to September 1982. WATER TEMPERATURES: October 1980 to September 1982.

INSTRUMENTATION. -- Water-quality minimonitor since October 1980.

REMARKS.--Letter K indicates non-ideal colony count. Extremes are published for years with 80 percent or more daily record. Malfunctions of the monitor resulted in less than 80 percent recorded daily record for the current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		-	•	SPE-	-			•	BARO-	
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	METRIC PRES- SURE (MM OF HG) (00025)	TUR- BID- ITY (NTU) (00076)
OCT 28 JAN	0930	1310	428	438	8.6	8.2	10.0	3.0	738	8.4
18	1515	973		355		7.9	8.0	.0	733	34
MAR 16	1210	800	377	365	7.9	7.9	3.0	.0	732	50
MAY 04	1355	2050	440	431	8.3	8.0	15.0	16.5	729	31
JUN 30⋅⋅⋅	1235	1430	355	358	8.6	7.9	23.0	19.5	742	25
AUG 24	1530	1130	350	328	8.3	8.2	21.0	21.5	735	17
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS (MG/L AS CACO3) (00900)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3) (95902)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)
OCT 28			K80	960	233	33	57	22	6.6	.2
JAN 18	10.6	75	42	91	183	3.0	47	16	4.4	•1
MAR 16	13.2	94	K52	750	190	•00	48	17	4.8	.2
MAY 04	9.5	102	K27	2800	228	58	60	19	4.3	.1
JUN 30			130	960	178	14	45	16	4.3	.1
AUG 24	7.9	93		150	172	11	44	15	3.8	.1
		,,,								
DA	POT SI DI SOL (MG TE AS	UM, LINI S- LA VED (MG /L AS K) CAC	TY SULF B DIS /L SOL (MG O3) AS S	- DIS VED SOL /L (MG O4) AS	DE, RIE NVED SOL /L (MG CL) AS	DE, DIS S- SOL VED (MG /L AS F) SIC	S- AT 1 VED DEG //L DI SOL (MG	DUÉ SUM 80 CONS 6. C TUEN S- DI VED SOI 6/L) (MG	OF SOLI STI- DI STS, SOL SS- (TO VED PE E/L) DA	S- VED NS R Y)
OCT 28		2.4 20	0 h	2	4.5	•1	5.9	292	261 1	030
JAN		2.4 18		1	4.2	.1	3.3	243	197	638
MAR		2.8 19		3	3.3	.1	3.5	236	207	510
MAY		4.5 17		9	4.6	.1	4.6	227		260
JUN		2.4 16	_	0	2.5	•2	3.0	232	192	896
AUG		2.3 16	1 1	8	2.8	.1	4.1	219	187	668

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued

DA	A TE	NITE GEN NO2+N DIS SOLV (MG/ AS N	I, IO3 AM S- VED S 'L I	VITRO- GEN, MMONIA DIS- SOLVED (MG/L AS N) DO608)	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L N)	PHO PHOR TOT (MG AS	US, AL /L P)		US, S- VED /L P)	PHO PHOR ORT DIS SOLV (MG/ AS P	US, HO, ED L	SED MEN' SUS PEN (MG	r, - DED /L)	SED MENT DI CHAR SU PEN (T/D) (801	T, S- GE, S- DED AY)	SIE	SP. VE AM. NER AN MM
OCT 28	r 8		.20	.060	1	.10		040		0 20	<.	010		50		178		96
JAN 18	N B		.09	.090		.62		030		.020		010						
	6		.15	.180		•99		070		040		0 20		34		73		93
	4	<.	10	.080		.80		170		050	<.	010		84		465		94
JUN 30 AUG	0	٠.	10	.030		.80		110		070		0 20		65		251		97
	4	<.	10	<.010	1	.00	•	060	•	0 20	•	010			1			
DATE	TI	ME	ARSENI TOTAL (UG/I AS AS (01002	IC II L SC L (U S) AS	ENIC IS- LVED G/L AS)	ERA (UC	COV- ABLE I/L BA)	DI: SOL' (Ud AS		TO RE ER (U AS	MIUM TAL COV- ABLE G/L CD) 027)	SO (U AS	MIUM IS- LVED G/L CD) 025)	MIC TO REC ER (UC	CAL COV- ABLE E/L CR)	(UC	M, S- LVED H/L CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO) (01037)
OCT 28	na	30		3	2		100		60		<1		<1		20		10	<1
JAN 18		15		2	1		100		57				<1				<10	
MAY 04		55		3	3	((100		56		<1		<1		30		30	1
AUG 24		30		3	3		100		58		1		<1		10		10	7
DATE	COBA DIS SOLV (UG AS (010	LT, - ED /L CO)	COPPER TOTAL RECOV ERABL (UG/I AS CU (01042	COF COF DI LE SO (U J) AS	PPER, S- LVED G/L CU) 040)	ERA (UG	CAL COV- BLE I/L FE)	D) SO) (U) AS	ON, IS- LVED G/L FE) O46)	TO RE ER (U AS	AD, TAL COV- ABLE G/L PB)	SO (U AS	AD, IS- LVED G/L PB) 049)	NES TO REC ER/	CAL COV- ABLE B/L MN)	NES DI SOL (UG	S- VED /L MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)
OCT 28 JAN		<1		6	2		360		29		3		1	1	40		15	-7
18 MAY		<1	-		3		370		23				<1	ı	20		7	•1
04 AUG		<1		6	2	1	200		41		5		5		100		17	<.1
24		2		5	4		590		15		3		2		90		9	<.1
ост 28	ATE P	MERCU DIS SOLV (UG/ AS H (7189	RY 1 - F ED E L (G) A	CCKEL, POTAL RECOV- PRABLE (UG/L AS NI) 01067)	NICK DIS SOL (UG AS	VED /L NI)	SEL NIU TOT (UG, AS	M, AL /L SE)	SOL (UG	M, S- VED /L SE)	SILVI TOT RECC ERA (UG, AS	AL OV- BLE /L AG)	(UG,	S- VED /L AG)	ZING TOT RECG ERAI (UG, AS	AĹ OV- BLE /L ZN)	ZIN DI SOL (UG, AS	S- VED /L ZN)
	3		.1			2		<1		<1		<1		<1		100		78
	٠	<	.1	5		2		<1		<1		<1		<1		30		6
AUG 24	} † • • •	<	.1	5		2		<1		<1		<1		<1	1	40		4

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY	7.		MARCH			APRIL	ı		MAY	
1 2 3 4 5							272 260 265 271 294	255 252 256 262 271	264 255 260 265 281	442 443 440 440 435	435 440 433 433 399	437 442 436 435 417
6 7 8 9 10							311 321 329 335 333	295 312 322 329 320	302 317 326 332 327	432 457 457 451 443	397 433 451 443 432	414 448 454 447 436
11 12 13 14 15							320 308 301 296 273	307 293 295 260 267	314 302 298 279 270	432 443 461 461 455	428 426 443 455 447	429 430 454 458 451
16 17 18 19 20				365 366 358 344 335	364 356 339 331 325	364 359 345 334 327	287 312 316 316	274 293 312 309	280 297 315 313	454 484 491 495 486	446 454 486 486 462	448 469 488 493 475
21 22 23 24 25				341 344 354 361 359	329 340 343 352 354	335 342 349 355 356				461 439 418 404 399	439 420 406 397 393	450 429 411 400 395
26 27 28 29 30 31				360 365 365 356 303 273	356 359 355 304 272 265	358 361 360 334 286 268	433	 422	428	393 385 382 380 377 370	385 377 380 377 370 366	389 381 381 378 373 368
MONTH										495	366	430
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN	MEAN	MAX	MIN AUGUST		MAX	MIN SEPTEME	
DAY 1 2 3 4 5	368 370 371 371 370		MEAN 367 368 370 370 368	385 		MEAN 374	MAX 423 422 420 417 410			MAX		
1 2 3 4	368 370 371	JUNE 364 366 368 368	367 368 370 370	385 	JULY 360 	374	423 422 420 417	AUGUST 400 391 388 382	407 405 397 403	MAX		
1 2 3 4 5	368 370 371 371 370 371 368	JUNE 364 366 368 367 367	367 368 370 370 368 370 366	385 450 446 460	JULY 360 417 432 446	374 422 439 454	423 422 420 417 410 388 386 381 382	AUGUST 400 391 388 382 381 374 377	407 405 397 403 395 380 381	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14	368 370 371 371 370 371 368 364 364 364 377 386 395 403	JUNE 364 366 368 367 367 364 362 361 363 377 386 395	367 368 370 370 368 370 366 363 363 362 368 382 389	385 450 446 460 457 451 460 458 458	JULY 360 417 432 446 422 420 426 446	374 422 439 454 450 446 453 451 448	423 422 420 417 410 388 386 381 382 378 372 380 368 368	400 391 388 382 381 374 377 372 366 362 363 358 360 356	407 405 397 403 395 380 381 376 373 368 365 365 359	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	368 370 371 371 370 371 368 364 364 364 377 385 404 403 398 404	JUNE 364 366 368 368 367 367 364 362 361 363 377 386 395 402 395 3884	367 368 370 368 370 368 376 363 363 362 368 389 403 399 403 397 3886 382	385 450 446 460 457 451 460 458 458 458 457 461 461 473 440	JULY 360 417 432 446 422 420 426 446 422 418 418 415 415	374 429 459 451 451 451 451 451 448 451 448 451 449 429	423 422 420 417 410 388 386 381 378 378 378 368 368 369 359 358 357 366 366	400 391 388 382 381 377 372 366 362 363 356 356 350 356 350	407 405 397 405 397 395 380 381 376 376 365 365 365 359 354 3540 355	MAX		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	368 370 371 371 370 371 368 364 364 377 385 403 403 403 3985 3885 3885 3885 3885 3885 3885 388	JUNE 364 368 368 367 367 364 362 361 363 377 386 395 402 395 381 378 377 376 377 376	367 368 370 368 370 368 376 363 363 368 389 403 399 403 3882 3882 3882 3882 3882 3882 3882 38	385 450 4460 457 451 460 457 461 458 457 461 473 447 450 447	JULY 360 417 432 446 422 420 426 446 422 418 415 417 406 418 417 406 418	374 422 439 450 4451 4451 4451 4451 4451 4451 4451	423 422 420 417 410 388 386 381 382 378 368 368 369 359 366 359 360 3559	400 391 388 382 381 377 3766 362 358 360 356 350 351 350 350 350 350 350 350 350	407 405 397 405 397 395 380 381 3763 368 365 365 3555 3555 3555 3559 3559	MAX		

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRII	.i		MAY	
1 2 3 4 5							.0 .0 .0	.0 .0 .0	.0 .0 .0	16.0 17.5 18.0 18.0 17.5	14.0 15.5 17.5 17.5 16.0	15.0 16.5 18.0 18.0 16.5
6 7 8 9							.0 .0 .0	.0 .0 .0	.0 .0 .0	15.5 14.0 13.5 13.0 12.0	14.5 13.0 12.0 12.0 11.5	15.0 13.5 13.0 12.5 11.5
11 12 13 14 15							.0 .0 .0 2.0 2.5	.0 .0 .0 .0	.0 .0 .0 .5 2.0	12.0 12.0 12.5 13.0 15.0	11.5 11.5 12.0 12.5 13.0	11.5 12.0 12.0 13.0 14.0
16 17 18 19 20				.0 .0 .0	.0 .0 .0	.0 .0 .0	5.0 6.0 8.5 8.5 9.5	3.0 5.0 8.0 7.0 7.0	4.0 5.5 8.5 7.5 8.5	17.0 17.0 17.0 16.0 16.0	15.0 16.5 16.0 15.5 15.0	16.0 16.5 17.0 16.0 15.5
21 22 23 24 25				.0 .0 .0	.0 .0 .0	.0 .0 .0	10.0 11.0 12.0 13.0	8.0 9.0 10.5 12.5 11.0	9.5 10.5 11.5 12.5 12.0	16.0 16.5 18.0 18.5 19.5	15.5 15.0 16.0 17.5 18.0	15.5 16.0 17.0 18.0 18.5
26 27 28 29 30 31				.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0	13.0 13.5 13.5 13.5 15.0	11.5 12.0 12.0 12.0 13.0	12:0 12:5 12:5 12:5 13:5	20.5 22.0 22.5 22.5 22.5 19.5	18.5 19.5 20.5 21.5 20.0 17.0	19.5 20.5 21.5 22.0 21.0 18.0
MONTH							15.0	.0	5.0	22.5	11.5	16.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	JULY MIN	MEAN	MAX	MIN AUGUS		MAX	MIN SEPTEME	
DAY 1 2 3 4 5	MAX 17.0 17.0 18.0 17.5 18.0		MEAN 16.0 16.0 17.0 17.0	MAX 23.0 23.5 24.0 24.0		MEAN 21.5 22.5 22.0 22.5 23.0	MAX 25.5 26.0 26.5 27.0 27.5			18.5 18.5 19.0 19.0		
1 2 3 4	17.0 17.0 18.0 17.5	JUNE 16.0 15.0 16.0 16.0	16.0 16.0 17.0 17.0	23.0 23.0 23.5 24.0	JULY 20.0 22.0 20.0 20.0	21.5 22.5 22.0 22.5	25.5 26.0 26.5 27.0	AUGUS 20.0 20.0 21.0 25.0	23.0 23.0 24.5 25.5	18.5 18.5 19.0 19.0	SEPTEME 17.0 17.0 17.0 15.0	17.5 17.5 17.5 17.5
1 2 3 4 5 6 7 8	17.0 17.0 18.0 17.5 18.0 17.5 16.5 15.0 14.5	JUNE 16.0 15.0 16.0 16.5 16.5 14.0 13.5	16.0 16.0 17.0 17.0 17.0 17.0 14.0	23.0 23.5 24.0 24.0 24.0 24.0 23.5	JULY 20.0 22.0 20.0 20.0 20.0 20.0 20.0 20.	21.5 22.5 22.0 22.5 23.0 23.0 23.0 23.0	25.5 26.0 26.5 27.5 27.5 27.5 27.5 23.0	20.0 20.0 21.0 25.0 25.0 25.0 20.0 20.0	23.0 23.0 24.5 25.5 26.0 26.5 26.5 22.5 21.0	18.5 18.5 19.0 19.0 19.0 19.0 20.0	17.0 17.0 17.0 15.0 15.0 15.0 15.0 20.0	17.5 17.5 17.5 17.5 17.5 17.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	17.0 17.0 18.0 17.5 18.0 17.5 15.0 14.5 15.5 18.0 19.0 20.5 21.5	JUNE 16.0 15.0 16.0 16.5 16.5 13.5 13.0 15.0 16.5 17.5	16.0 16.0 17.0 17.0 17.0 17.0 14.5 14.0 14.5 17.5 19.0 20.5	23.0 23.0 23.0 24.0 24.0 24.0 24.0 23.5 22.5 26.0 25.5	JULY 20.0 22.0 20.0 20.0 20.0 20.0 20.0 20.	21.5 22.5 22.0 22.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	25.5 26.0 26.5 27.0 27.5 27.5 27.0 26.5 23.0 21.5 22.0 23.0	20.0 20.0 21.0 25.0 25.0 25.0 20.0 20.0 20.0 20.0 20	23.0 23.0 24.5 25.5 26.0 26.5 22.5 21.0 19.5	18.5 18.5 19.0 19.0 19.0 18.5 20.0 21.5 23.0 21.0 18.5 16.0	SEPTEME 17.0 17.0 17.0 15.0 15.0 15.0 20.0 20.5 20.5	17.5 17.5 17.5 17.5 17.5 17.5 17.5 20.5 21.5 18.5 17.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	17.0 17.0 18.0 17.5 18.0 17.5 16.5 15.0 14.5 15.5 18.0 19.0 20.5 21.5 21.5 21.0 20.5 21.5	JUNE 16.0 15.0 16.0 16.5 16.5 14.0 13.5 13.0 15.5 19.5 20.0 19.5 19.5 17.5	16.0 16.0 17.0 17.0 17.0 17.0 14.5 14.5 14.0 14.5 20.5 20.5 20.5	23.0 23.5 24.0 24.0 24.0 24.0 23.5 26.0 26.5 26.0 25.0 26.5 26.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29	JULY 20.0 22.0 20.0 20.0 20.0 20.0 20.0 20.	21.5 22.5 22.5 22.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	25.5 26.0 26.5 27.5 27.5 27.0 26.5 23.0 21.5 22.0 23.0 23.0 23.5	20.0 20.0 21.0 25.0 25.0 25.0 20.0 20.0 20.0 20.0 20	23.0 23.0 24.5 25.5 26.0 26.5 22.5 21.0 19.5 21.0 22.5 21.0 22.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	18.5 18.5 19.0 19.0 19.0 18.5 20.0 21.5 23.0 21.0 18.5 16.0 10.5	SEPTEME 17.0 17.0 17.0 15.0 15.0 15.0 20.0 20.5 20.5 10.5 10.0 10.0 12.0	17.5 17.5 17.5 17.5 17.5 17.5 17.5 20.5 21.5 21.5 21.5 18.5 17.0 14.0 10.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	17.0 17.0 17.5 18.0 17.5 16.5 15.5 15.5 18.0 20.5 21.5 21.5 21.5 21.0 20.0 20.0 20.5 21.5	JUNE 16.0 15.0 16.0 16.5 15.5 14.0 13.0 15.5 17.5 19.5 17.5 17.5 17.5 17.5 18.5 19.5	16.0 16.0 17.0 17.0 17.0 17.0 14.5 14.5 14.0 14.5 19.0 20.5 20.5 20.5 19.5 18.5 18.5 18.5	23.0 23.5 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	JULY 20.0 22.0 20.0 20.0 20.0 20.0 22.0 22.	21.5 22.5 22.5 22.0 23.0 23.0 23.0 23.0 23.0 23.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	25.5 26.0 26.5 27.0 27.5 27.0 26.5 23.0 21.5 22.0 23.0 23.0 23.0 25.5 26.5 26.5 26.5	20.0 20.0 21.0 25.0 25.0 20.0 20.0 20.0 20.0 20.0 22.0 20.0 22.0 20.0 22.0 20.0 22.0 20.0	23.0 23.0 24.5 25.5 26.0 26.5 22.5 21.0 19.5 21.0 20.5 21.0 22.5 23.0 22.5 22.5 22.5 22.5 23.0 22.5 22.5 22.5 22.5 23.0	18.5 18.5 19.0 19.0 19.0 19.0 21.5 23.0 23.0 21.0 18.5 16.0 10.5 14.0 13.0 12.5 14.0 13.0	SEPTEME 17.0 17.0 17.0 15.0 15.0 15.0 20.0 20.5 10.0 10.0 10.0 12.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0	17.5 17.5 17.5 17.5 17.5 17.5 17.5 21.5 21.5 21.5 21.5 21.5 18.5 17.0 14.0 10.0 12.5 13.0 12.0 12.0 12.5 13.0

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND

LOCATION.--Lat 47°56'34", long 97°03'10", in SW\nE\ sec.33, T.152 N., R.50 W., Grand Forks County, Hydrologic Unit 09020301, on left bank on second floor of old sewage plant in Grand Forks, 2.3 mi (3.7 km) downstream from Red Lake River, and at mile 295.7 (475.8 km).

DRAINAGE AREA.--30,100 mi² (78,000 km²), approximately, including 3,800 mi² (9,840 km²) in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1882 to current year. Monthly discharge only prior to May 1901, published in WSP 1308.

REVISED RECORDS.--WSP 855: 1936(M). WSP 1115: 1942. WSP 1175: 1897(M). WSP 1388: 1904, 1914-15, 1917-19, 1921-22, 1927, 1950. WSP 1728: Drainage area. WRD-ND-81-1: 1882, 1897 (M).

GAGE.--Water-stage recorder. Datum of gage is 778.35 ft (237.241 m) National Geodetic Vertical Datum of 1929.

Nov. 3, 1933, to Apr. 13, 1965, water-stage recorder 0.3 mi (0.5 km) upstream at present datum. See WSP 1728 or 1913 for history of changes prior to Nov. 3, 1933.

REMARKS. Records good.

WTR YR 1982 TOTAL 1310504 MEAN 3590

AVERAGE DISCHARGE.--100 years, 2,546 ft 3 /s (72.10 m 3 /s) 1,845,000 acre-ft/yr (2.27 km 3 /yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, about 85,000 ft³/s (2,410 m³/s) Apr. 10, 1897, gage height, 50.2 ft (15,30 m), site and datum then in use, from rating curve extended above 54,000 ft³/s (1,530 m³/s); minimum, 1.8 ft³/s (0.051 m³/s) Sept. 2, 1977, caused by unusual regulation during repair of dam at Grand Forks.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 23,900 ft 3 /s (677 m 3 /s) Apr. 12, gage height, 37.18 ft (11.332 m); minimum daily, 884 ft 3 /s (25.0 m 3 /s) Oct. 1.

		DISCHA	RGE, IN CU	JBIC FEET	PER SECO	ND, WATEI MEAN VAL	R YEAR OCT UES	OBER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	884 960 1370 1920 2040	2170 2110 2060 1990 1900	1470 1380 1290 1200 1190	1200 1200 1200 1200 1200	990 990 990 990	1290 1280 1250 1250 1250	11400 13600 15600 17400 18500	5960 5490 5090 4840 5060	4810 4660 4450 4200 4020	2430 2500 2530 2460 2490	2860 2810 2720 2610 2470	1350 1330 1320 1300 1290
6 7 8 9 10	1890 1890 2300 2590 2550	1830 1800 1800 1840 1920	1080 1040 1120 1110 1050	1190 1180 1170 1160	990 990 1000 1000	1250 1260 1290 1320 1300	18800 19000 19800 20800 21000	6460 7350 6800 5680 4900	3900 3790 3710 3800 3790	2530 2820 3070 3100 3010	2410 2350 2250 2180 2080	1280 1270 1250 1240 1190
11 12 13 14 15	2480 2550 2640 3040 3840	1950 1950 1950 1950 1990	1040 1060 1080 1150 1170	1160 1150 1150 1150 1140	1000 1010 1020 1030 1040	1290 1280 1290 1320 1360	23100 23600 23900 23800 23700	4600 4500 4800 5150 5210	3750 3730 3700 3600 3450	29 20 29 60 29 20 28 30 28 40	2000 1980 1900 1880 1870	1200 1220 1240 1250 1270
16 17 18 19 20	3970 3570 3140 2870 2890	2000 2010 2030 2060 2050	1110 1090 1080 1100	1140 1120 1100 1100 1140	1050 1060 1080 1100 1120	1380 1450 1540 1700 2000	23600 23400 23200 22700 21600	5400 5810 6520 7200 7850	3300 3160 3010 2910 2840	2790 2710 2700 3630 4080	1860 1830 1740 1690 1650	1260 1270 1260 1320 1310
21 22 23 24 25	2910 2840 2730 2650 2550	1790 1510 1250 1380 1650	1100 1100 1100 1100 1100	1140 1150 1150 1150 1120	1140 1160 1180 1200 1200	2260 2610 3010 3300 3450	19700 16700 14000 12100 10700	8100 8050 7820 7460 6910	2780 2730 2690 2680 2610	4090 4040 4470 4580 4230	1570 1500 1440 1440 1350	1270 1250 1240 1270 1240
26 27 28 29 30 31	2410 2340 2280 2230 2170 2170	1700 1650 1400 1400 1500	1100 1100 1100 1100 1100	1100 1080 1070 1020 1020	1210 1210 1250 	3650 3900 4150 4690 6280 9120	9660 8860 8060 7290 6540	6420 6000 5650 5350 5110 4930	2550 2520 2520 2490 2450	3860 3620 3570 3390 3120 2920	1290 1350 1430 1470 1440 1410	1220 1250 1290 1290 1290
TOTAL MEAN MAX MIN AC-FT	76664 2473 3970 884 152100	54590 1820 2170 1250 108300	35010 1129 1470 1040 69440	35230 1136 1200 1020 69880	29990 1071 1250 990 59490	73770 2380 9120 1250 146300	522110 17400 23900 6540 1036000	186470 6015 8100 4500 369900	100600 3353 4810 2450 199500	99210 3200 4580 2430 196800	58830 1898 2860 1290 116700	38030 1268 1350 1190 75430

MAX 23900

MIN 884

AC-FT

2599000

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1949 to current year.

DATE	Т	IME	FLO INS TAN (C	EAM- OW, TAN- EOUS FS) 061)	CI CO DU AN (UM	E- FIC N- CT- CE HOS)	(ST A UNI	H AND- RD TS) 400)	AT A (DE	PER- URE, IR G C) 020)	AT (DE	PER- URE G C) 010)	NE (M A CA	G/L	NE NON BON (M A CAC	CAR- ATE G/L S	DI SO: (M AS	CIUM S- LVED G/L CA) 915)	MAG SI DI SOL (MG AS	UM, S- VED /L MG)
APR 23	1	0 25	1	4 20 0		460		7.7		20.0		9.5		205	4	7		49	2	20
AUG 25 25		250 251		1300 1300		364 364		8.4		12.0		22.0		188 188	1 2			44 47		.9 7
27	1	1,7		1300		304		0.4				22.0		100		O		• 1	1	'
DATE	DI SOL (M AS		SO T	DIUM AD- RP- ION TIO 931)	S D SO (M AS	TAS- IUM, IS- LVED G/L K) 935)	BON FET (M A HC	CAR- ATE, -LAB G/L S O3) 440)	FET (M	R- ATE, -LAB G/L AS O3) 445)	LINI L (M) A CA	AB G/L	DIO: D SO: (M AS	RBON XIDE IS- LVED G/L CO2) 405)	DI SO (M AS	FATE S- LVED G/L SO4) 945)	RII DI SO: (M AS	LO- DE, S- LVED 3/L CL) 940)	FLU RID DI SOL (MG AS (009	E, S- VED /L F)
APR 23		15		•5		7.2	19	2		.00	1	58		6.1		67		7.5		.2
AUG 25 25		7.0 7.7		•2 •3		3.8 3.1	21	3		.00		70 68		1.3 1.3		23 26		4.8 4.5		.2
DA APR	TE	SILI DIS SOL (MG AS SIO (009	VED /L 2)	SOLI RESI AT 1 DEG DI SOL (MG (703	DUÉ 80 . C S- VED /L)		OF TI- TS, S- VED /L)	SOLI DI SOL (TO PE DA (703	S- VED NS R Y)	NIT GE NITR DI SOL (MG AS	N, ATE S- VED /L N)	NIT GE NO2+ DI SOL (MG AS (006	N, NO3 S- VED /L N)	PHOS PHORU ORTH DIS- SOLVU (MG/) AS P	JS, HO, ED	ARSE DI SOL (UG AS (010)	S- VED /L AS)	BORG DI: SOL (UG, AS) (010)	S- VED /L 3)	
	• • •	1	3		306		277	11	700		.70				.09		2		50	
	•••		6.5 7.1		231 235		214 214		811 825		.23	<	.10		.06		3		80 40	
DA		LITH DI SOL' (UG AS :	S- VED /L LI)	IRO DI SOL (UG AS	S- VED /L FE)		S- VED /L PB)	MAN NES DI SOL (UG AS (010	E, S- VED /L MN)	MERC DI SOL (UG AS (718	S- VED /L HG)	MOL DEN DI SOL (UG AS (010	UM, S- VED /L MO)	SELI NIUM DIS SOLV (UG, AS S	I, S+ /ED /L SE)		UM, S- VED /L SR)	ZING DI: SOL' (UG; AS :	S- /ED /L ZN)	
APR 23 AUG			17		60		0		0		•3		1		0		120			
25	• • •		14 11		20 6		0 <1		10 12		.3 <.1		1 6		0 <1		100 110		 8	

RED RIVER OF THE NORTH BASIN

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--Continued

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	TEMPER- ATURE (DEG C) (00010)
OCT 23 NOV	1500	2690	620	4.0
23 DEC	1355	1220	588	•0
22	1200	1190	592	.0
JAN 22	1055	1150	482	.0
FEB 25	1300	1220	480	.0
MAR 23	1645	3120	383	.0
APR 05 08 13 23 26	1140 1420 1135 1025 1320	19600 19800 23700 14200 9680	312 323 340 460 460	.0 .5 2.0 9.5 12.0
03 10 18 24 JUN	1240 1050 1000 1150	4860 4970 6440 7240	572 550 568 538	15.0 13.0 17.0 16.5
07 24	1100 1045	3670 2660	540 481	17.0 20.0
JUL 26	1105	3780	498	25.0
AUG 25 25 SEP	1250 1251	1300 1300	364 364	22.0 22.0
24	1005	1320	355	12.0

05087500 MIDDLE RIVER AT ARGYLE, MN

LOCATION.--Lat 48°20'25", long 96°48'58", in NElNWt sec.15, T.156 N., R.48 W., Marshall County, Hydrologic Unit 09020309, at upstream side of bridge on County Highway 4 in Argyle and 14 mi (22 km) upstream from mouth. Prior to June 29, 1982, at site 800 ft (240 m) downstream.

DRAINAGE AREA. -- 265 mi² (686 km²).

PERIOD OF RECORD. -- March to September 1945, October 1950 to September 1981. Monthly discharge only for some periods, published in WSP 1728. October 1981 to January 1982, operated as a high-flow partial-record station. February to September 1982.

GAGE.--Non-recording gage. Datum of gage is 828.53 ft (252.536 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 8, 1951, nonrecording gage and Nov. 8, 1951, to Sept. 18, 1952, water-stage recorder at site 800 ft (240 m) downstream at datum 1.0 ft (0.30 m) higher. Sept. 19, 1952, to June 28, 1982, recording gage at site 800 feet (240 m) downstream at present datum.

REMARKS .-- Records good.

AVERAGE DISCHARGE.--31 years (water years 1951-81), 41.2 ft 3 /s (1.167 m 3 /s), 29,850 acre-ft/yr (36.8 hm 3 /yr); median of yearly mean discharges, 37 ft 3 /s (1.05 m 3 /s), 26,800 acre-ft/yr (33 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 4,260 ft 3 /s (121 m 3 /s) July 3, 1975, gage height, 16.59 ft (5.057 m) present datum, site then in use; no flow at times in most years.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1950 reached a stage of 15.25 ft (4.648 m) present datum, site then in use, from floodmarks, discharge, 2,790 ft³/s (79.0 m³/s).

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 711 ft³/s (20.1 m³/s) Apr. 18, gage height, 9.96 ft (3.036 m) present datum, site then in use; minimum daily (February to September), 0.26 ft³/s (0.007 m³/s) Sept. 11.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5						1.2 1.2 1.2 1.2	257 280 300 270 250	50 45 45 54	23· 20 18 15 14	10 8.4 8.4 6.9	17 37 33 31 28	.75 .67 .55 .53
6 7 8 9 10						1.2 1.2 1.2 1.2 1.2	230 210 190 180 180	211 245 199 146 116	13 13 12 13 13	70 218 225 180 159	27 25 23 19 16	.43 .43 .58 .50
11 12 13 14 15						1.2 1.2 1.3 1.4 2.5	180 250 338 450 600	95 84 80 75 74	14 20 35 34 31	88 67 56 45 43	13 13 11 9.1 8.4	.26 .55 .34 .45
16 17 18 19 20						5.0 8.0 10 8.5	666 699 702 560 391	76 108 169 195 199	27 23 19 16 14	58 49 42 33 29	7.3 7.8 6.7 5.2 4.1	•53 •53 •55 •50 •45
21 22 23 24 25					1.2	12 12 9.5 8.0 7.0	290 225 1 7 6 143 117	174 143 114 92 76	12 10 10 9.4 8.6	28 24 22 21 19	3.9 2.8 2.4 1.9 1.6	.41 .32 .30 .27 .34
26 27 28 29 30 31					1.2 1.2 1.2	6.0 6.5 8.0 20 40 100	99 87 78 66 58	63 51 44 36 30 27	8.0 7.6 8.4 13 12	17 15 14 16 14 17	1.7 2.0 2.1 1.1 1.1	.39 .87 .64 .75 .58
TOTAL MEAN MAX MIN AC-FT						290.1 9.36 100 1.2 575	8522 284 702 58 16900	3170 102 245 27 6290	486.0 16.2 35 7.6 964	1620.7 52.3 225 6.9 3210	363.19 11.7 37 .99 720	14.84 .49 .87 .26 29

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND

LOCATION.--Lat 48°34'20", long 97°08'50", in SEASEASEA sec.24, T.159 N., R.51 W., Pembina County, Hydrologic Unit 09020311, on downstream end of east pier of interstate highway bridge, 1.5 mi (2.4 km) northeast of Drayton, and at mile 206.7 (332.6 km).

DRAINAGE AREA.--34,800 mi² (90,130 km²), approximately, includes 3,800 mi² (9,840 km²) in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1936 to June 1937, April 1941 to current year (fragmentary prior to April 1949).

REVISED RECORDS.--WSP 1388: 1949-50. WSP 1728: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 755.00 ft (230.124 m) National Geodetic Vertical Datum of 1929 (Minnesota Department of Transportation benchmark). Prior to Nov. 30, 1954, nonrecording gage at site 1.5 mi (2.4 km) upstream at datum 1.59 ft (0.485 m) higher.

REMARKS .-- Records good. Some regulation by reservoirs on tributaries.

AVERAGE DISCHARGE.--33 years (1949-82), 3,778 ft 3 /s (107.0 m 3 /s), 2,737,000 acre-ft/yr (3.37 km 3 /yr); median of yearly mean discharges, 2,650 ft 3 /s (75.0 m 3 /s), 1,920,000 acre-ft/yr (2.4 km 3 /yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 92,900 ft 3 /s (2,630 m 3 /s) Apr. 28, 1979, gage height, 43.66 ft (13.308 m); minimum observed, 7.7 ft 3 /s (0.22 m 3 /s) Oct. 16, 1936, gage height, 1.75 ft (0.533 m), former site and datum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1897 reached a stage of about 41 ft (12.5 m), at site and datum in use prior to Nov. 30, 1954.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 35,500 ft³/s (1,010 m³/s) Apr. 17, gage height, 36.78 ft (11.211 m); minimum daily, 912 ft³/s (25.8 m³/s) Feb. 4.

		DISCHA	RGE, IN CU	BIC FEET	PER SECO	OND, WATE MEAN VAI	R YEAR OCT LUES	OBER 1981	TO SEPTE	MBER 1982		
DAY	OCT	VOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	931	2290	1570	1190	940	1220	9820	10100	5150	2680	4200	1460
2	950	2290	1640	1210	940	1230	10400	8500	4950	2640	3900	1430
3	960	2270	1660	1220	922	1250	15200	7200	4800	2660	3700	1390
4	1070	2210	1550	1220	912	1280	17000	6350	4600	2690	3520	1360
5	1450	2150	1440	1220	940	1280	16500	5850	4400	3200	3360	1340
6	1870	2080	1300	1220	960	1250	20000	5700	4200	3940	3200	1320
7	1980	1980	1210	1210	970	1280	21100	7000	4050	4520	3030	1280
8	1960	1940	1100	1190	960	1280	22400	8420	3970	4900	2900	1240
9	2060	1920	1050	1190	970	1280	24200	8880	3900	5020	2750	1230
10	2380	1920	1100	1180	970	1280	25500	7820	3940	4900	2590	1240
11	2560	1970	1100	1170	970	1280	26700	6820	4000	4560	2440	1220
12	2640	2010	1050	1180	970	1290	28200	6250	4020	4140	2310	1210
13	2600	2020	1050	1160	980	1290	31700	5830	4020	3860	2210	1210
14	2600	2010	1050	1160	1000	1290	33700	5750	4040	3680	2150	1210
15	2900	2020	1080	1160	1020	1290	34900	6000	4020	3520	2080	1210
16	3680	2040	1150	1130	1040	1290	35400	6650	3920	3420	2060	1210
17	4260	2040	1170	1110	1060	1290	35400	7750	3700	3380	2020	1210
18	4200	2040	1140	1090	1080	1290	35200	8600	3590	3280	2010	1240
19	3800	2040	1120	1060	1100	1290	31000	9500	3400	3180	1960	1230
20	3460	2040	1100	1050	1140	1350	28900	10500	3300	3620	1880	1240
21	3300	2040	1100	1060	1140	1470	27500	11400	3200	4440	1790	1250
22	3300	2010	1100	1080	1150	1740	25900	11800	3160	4740	1740	1260
23	3280	1780	1100	1070	1140	2040	24700	11400	3070	4720	1660	1230
24	3140	1490	1100	1040	1110	2240	23400	10200	2990	5120	1570	1230
25	3010	1340	1100	1050	1150	2660	22200	9000	2930	5660	1510	1230
26 27 28 29 30 31	28 20 26 90 25 90 25 00 24 10 23 60	1360 1460 1480 1420 1440	1100 1100 1100 1100 1100 1150	1010 990 980 970 960 950	1170 1200 1240 	2800 3010 3300 3700 4750 7050	20700 18900 16700 14300 12100	7900 7150 6500 6050 5700 5400	2840 2750 2750 2750 2730	60 20 59 40 57 80 5560 51 80 4680	1460 1400 1360 1370 1450 1470	1220 1220 1250 1260 1260
TOTAL MEAN MAX MIN AC-FT	79711 2571 4260 931 158100	57100 1903 2290 1340 113300	36780 1186 1660 1050 72950	34480 1112 1220 950 68390 N 4386	29144 1041 1240 912 57810	60340 1946 7050 1220 119700	709620 23650 35400 9820 1408000	241970 7805 11800 5400 479900	111140 3705 5150 2730 220400	131630 4246 6020 2640 261100	71050 2292 4200 1360 140900	37890 1263 1460 1210 75150
arn In	1002 101	rvn 1000	HEA.	4300	PIAA	22400	LITIN ATS	AC-PI	31/5000			

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1972 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	HARD- NESS (MG/L AS CACO3) (00900)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3) (95902)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO
APR 22 AUG	1615	24600	470	8.6	24.0	8.5	189	51	46	18	17	.6
30	1420	1640	492	8.5	13.5	18.0	211	28	53	19	27	.8
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE, FET-LAB (MG/L AS HCO3) (95440)	CAR- BONATE, FET-LAB (MG/L AS CO3) (95445)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2) (00405)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)
APR 22	7.5	168	.00	138	.7	61	18	.2	13	303	269	20100
AUG 30	4.9	223	•00	180	1.1	37	31	.2	8.0	343	291	1520
DATE	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P (00671)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BORON, DIS- SOLVED (UG/L AS B) (01020)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)
APR 22	1.20	.16	2	50	16	60	0	0	.6	2	3	120
AUG 30	•23		2	80	12	250	0	10	.3	1	0	150

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	TEMPER- ATURE (DEG C) (00010)	
NOV 13	1630	2030	690	4.5	
JAN 13	1255	1160	550	•0	- 1
FEB 02 MAR	1330	936	530	.0	
23 APR	1650	2100	300	.0	
14 19 22 26 29	1250 1335 1615 1255 1210	33700 31000 24600 20800 14400	395 402 4 7 0 518 520	2.0 6.0 8.5 11.0 10.0	
07 10 13 18 25	1400 1230 1225 1515 1230	7010 7880 5830 8660 9000	615 482 640 570 673	14.0 13.5 14.0 15.0 17.5	
08	12 1 0 1 12 5	3960 3060	632 615	16.0 20.0	i
JUL 13 AUG	1500	3620	658	25.5	
30	1420	1640	492	18.0	

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA (International gaging station)

LOCATION.--Lat 49°00'30", long 97°12'40", in sec.2, T.1, R.2 E., on right bank 1,500 ft (460 m) downstream from Canadian National Railway bridge in Emerson, 0.8 mi (1.3 km) downstream from international boundary, 3.6 mi (5.8 km) downstream from Pembina River, and at mile 154.3 (248.3 km).

DRAINAGE AREA.--40,200 mi² (104,100 km²), approximately, includes 3,800 mi² (9,840 km²) in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March to November 1902 (gage heights only), May 1912 to September 1929 (monthly discharge only, published in WSP 1308). October 1929 to current year.

GAGE.--Water-stage recorder. Datum of gage is 700.00 ft (213.360 m) National Geodetic Vertical Datum of 1929, by Geodetic Survey of Canada. See WSP 1728 or 1913 for history of changes prior to Apr. 10, 1953.

REMARKS.--Records good. Discharge partialy regulated by reservoirs on tributaries.

CAL YR 1981

WTR YR 1982

TOTAL

TOTAL

561264

MEAN 4372

1595756

COOPERATION. -- This station is one of the international gaging stations maintained by Canada under agreement with the United States.

AVERAGE DISCHARGE.--70 years (water years 1913-82), 3,295 ft 3 /s (93.31 m 3 /s), 2,387,000 acre-ft/yr (2.94 km 3 /yr); median of yearly mean discharges, 2,630 ft 3 /s (74.5 m 3 /s), 1,910,000 acre-ft/yr (2.4 km 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 95,500 $\rm ft^3/s$ (2,700 $\rm m^3/s$) May 13, 1950, gage height, 90.89 ft (27.703 m); maximum gage height, 91.19 ft (27.795 m) May 1, 1979; minimum observed discharge, 0.9 $\rm ft^3/s$ (0.025 $\rm m^3/s$) Feb. 6-8, 1937.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 34,000 ft 3 /s (963 m 3 /s) Apr. 18; minimum daily, 975 ft 3 /s (27.6 m 3 /s) Feb. 7.

		DISCHARG	BE, IN	CUBIC FEET	PER SECO	ND, WATER MEAN VAL		OBER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	938	2370	1280	1150	1030	1220	6130	14300	5820	2900	4320	1600
2	911	2300	1180	1190	1010	1240	8140	12900	5510	2860	3950	1580
3	911	2280	1090	1210	1010	1250	9640	10200	5260	2830	3710	1550
4	918	2250	1040	1220	1000	1270	10700	8750	5050	2830	3540	1520
5	1010	2220	1070	1220	994	1280	11900	7580	4810	3100	3410	1470
6	1340	2190	1120	1220	980	1290	12900	6610	4700	4110	3330	1450
7	1790	2130	1150	1220	975	1290	14000	6840	4610	4490	3170	1400
8	1950	2030	1170	1210	982	1290	15100	7980	4780	4760	3030	1370
9	1950	1980	1180	1190	993	1290	16000	8960	5430	4920	2940	1340
10	2040	1950	1180	1190	996	1290	16700	9110	5260	4960	2830	1300
11	2300	1940	1170	1180	1000	1300	17300	8650	5080	4790	2660	1290
12	2530	1970	1150	1170	1010	1310	18900	7980	5030	4460	2520	1290
13	2570	2000	1120	1160	1000	1320	22000	7300	4840	4150	2410	1260
14	2560	2030	1080	1160	1000	1320	28500	6890	4680	3890	2360	1250
15	2610	2050	1070	1150	1010	1320	31200	6890	4590	3710	2290	1250
16	2820	2070	1060	1150	1030	1320	32700	7090	4470	3550	2250	1270
17	3350	2080	1040	1140	1050	1330	33600	7690	4290	3500	2210	1270
18	3750	2080	1020	1130	1070	1360	34000	8600	4090	3390	2160	1280
19	3740	2070	1010	1120	1080	1370	34000	9300	3910	3280	2120	1300
20	3460	2080	1000	1110	1100	1390	33400	10100	3730	3220	2060	1290
21	3220	2100	996	1090	1110	1420	32500	10700	3580	3510	2020	1300
22	3100	2090	992	1080	1110	1480	31400	11200	3440	3950	1990	1310
23	3080	2030	1030	1100	1120	1610	30000	11300	3360	4150	1990	1310
24	3030	1870	1090	1120	1140	1840	28500	11000	3250	4220	1890	1280
25	2940	1630	1130	1130	1160	2130	26700	10400	3190	4600	1780	1280
26 27 28 29 30 31	2840 2710 2620 2540 2480 2440	1500 1470 1430 1380 1330	1130 1140 1140 1140 1130	1130 1140 1130 1110 1090 1060	1170 1190 1210 	2480 2800 3010 3220 3630 4710	25000 23400 22100 19000 17000	9580 8760 8000 7280 6670 6210	3130 3050 3000 2950 2930	5200 5410 5280 5160 4940 4660	1690 1630 1550 1510 1510 1570	1270 1280 1340 1340 1330
TOTAL	74448	58900	34228	35670	29530	54380	662410	274820	127820	126780	76400	40370
MEAN	2402	1963	1104	1151	1055	1754	22080	8865	4261	4090	2465	1346
MAX	3750	2370	1280	1220	1210	4710	34000	14300	5820	5410	4320	1600
MIN	911	1330	992	1060	9 7 5	1220	6130	6210	2930	2830	1510	1250
AC-FT	147700	116800	67890	70750	58570	107900	1314000	545100	253500	251500	151500	80070

6110

34000

MAX

MIN 246

MIN 911

AC-FT

1113000

3165000

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued (National stream-quality accounting network station) (Pesticide station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1978 to current year.

REMARKS. -- Letter K indicates non-ideal colony count and letter E indicates estimated value.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	DA	T: TE	STRE FLC INST IME TANE (CF (OOC	OW, CON CAN- DUC COUS ANG PS) (UMB	FIC N- P. CT- (ST. CE A. HOS) UNI	AND- A RD IS) (D	AIR A' EG C) (D	MPER- B TURE I' EG C) (N'	UR- ID- TY TU) 076)	
		1	035 E2	2250	650	8.6	•5	4.0		
		1	415 1	.260	600	7.9	-20.0	•0	5.2	
	FEB 24 APR	1.	230 1	.140	440	7.7	-6.5	• 0	9.5	
		1:	335 23	100	515	8.3	16.0	11.0	6	
		1:	100 E2	950	602	8.4	23.5	20.5 11	0	
			310 1	.970	534	8.4	16.0	22.0 8	7	
		DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREF TOCOCC FECAL KF AGA (COLS. PER 100 ML (31673	HARD- R NESS (MG/L AS CACO3			
		NOV 17	12.9	101	К3	8	io	- _.		
		JAN 11	12.4	87	113	17	6 27	3 65		
		FEB 24 APR	9.4	65	K17	K2	23	2 55		
		27 JUN	9.2	85	K30	48	0 19	7 49		
		30 AUG	7.9	90	К13	К3	2 25	9 59		
		24	7.9	93	К35	К9	0 20	6 48		
DATE	TIME	PCB, TOTAL (UG/L) (39516)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39519)	ALDRIN, TOTAL (UG/L) (39330)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39333)	CHLOR DANE, TOTAL (UG/L) (39350	TOM MA TERIAI (UG/KG	- DDD, L TOTAL) (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39363)	DDE, TOTAL (UG/L) (39365)
NOV 17	1035		0		.0	_	1	o	.6	
FEB 24	1230	<.10		<.01		<.1	0	- <.01		<.01
APR 27	1335	<.10	<1	<.01	<.1	<.1	0 <1.0	<.01	<.1	<.01
DATE	DDT, TOTAL (UG/L) (39370)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39373)	DI- AZINON, TOTAL (UG/L) (39570)	DI- ELDRIN TOTAL (UG/L) (39380)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39383)	ENDO- SULFAN TOTAL (UG/L (39388	, ENDRIN TOTAL) (UG/L	TERIAL (UG/KG)	ETHION, TOTAL (UG/L) (39398)	HEPTA- CHLOR, TOTAL (UG/L) (39410)
NOV		2			3			1		
17 FEB 24		•0			.1		1 / 0	0		
APR	<.01	<.1	.00	<.01		<.0 <.0			.00 <.01	<.01 <.01
27	<.01	1.1	<.01	<.01	.1	\.U	± \•0.	.	\.UI	\.UI

05102500 RED RIVER AT EMERSON, MANITOBA--Continued

	HEPTA-		HEPTA-				METH-			NAPH-	
	CHLOR,		CHLOR		LINDANE		OXY-			THA-	
	TOTAL	HEPTA-	EPOXIDE		TOTAL		CHLOR,	\mathtt{METHYL}	\mathtt{METHYL}	LENES,	
	IN BOT-	CHLOR	TOT. IN		IN BOT-	MALA-	TOT. IN	PARA-	TRI-	POLY-	
	TOM MA-	EPOXIDE	BOTTOM	LINDANE	TOM MA-	THION,	BOTTOM	THION,	THION,	CHLOR.	
	TERIAL	TOTAL	MATL.	TOTAL	TERIAL	TOTAL	MATL.	TOTAL	TOTAL	TOTAL	
DATE	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/KG)	(UG/L)	(UG/L)	(UG/L)	
	(39413)	(39420)	(39423)	(39340)	(39343)	(39530)	(39481)	(39600)	(39790)	(39250)	
NOV											
17	.0		.0		.0		.0				
FEB											
24		<.01		<.01		.00		.00	.00	<.10	
APR											
27	<.1	<.01	<.1	<.01	.1	<.01	<.1	<.01	<.01	<.10	

DATE	MIREX, TOTAL (UG/L) (39755)	PARA- THION, TOTAL (UG/L) (39540)	PER- THANE TOTAL (UG/L) (39034)	TOX- APHENE, TOTAL (UG/L) (39400)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (39403)	TOTAL TRI- THION (UG/L) (39786)	2,4-D, TOTAL (UG/L) (39730)	2,4,5-T TOTAL (UG/L) (39740)	SILVEX, TOTAL (UG/L) (39760)
NOV 17					.0				
FEB 24	<.01	.00	<.10	<1		.00	.03	•00	.00
APR 27	<.01	<.01	<.10	<1	<10	<.01	.04	<.01	<.01

DATE	TIME	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 24 APR	1230	22	68	
27 JUN	1335	213	13300	99
30	1100	188		100

CAL YR 1981 TOTAL 13529.1 WTR YR 1982 TOTAL 33433.4

MEAN 37.1 MEAN 91.6

MAX

MAX

1820

502

RED RIVER OF THE NORTH BASIN

05104500 ROSEAU RIVER BELOW SOUTH FORK NEAR MALUNG, MN

LOCATION.--Lat 48°47'30", long 95°44'40", in NW&SW& sec.6, T.161 N., R.39 W., Roseau County, Hydrologic Unit 09020314, on left bank 0.3 mi (0.5 km) downstream from South Fork and 1.5 mi (2.4 km) northwest of Malung.

DRAINAGE AREA.--573 mi^2 (1,484 km^2).

PERIOD OF RECORD. -- October 1946 to current year.

REVISED RECORDS.--WSP 2113: 1948, 1950, 1951, 1956(M), 1957(M), 1962(M).

GAGE .-- Water-stage recorder and concrete control. Datum of gage is 1,029.67 ft (313.843 m), adjustment of 1912.

REMARKS.--Records good except those for the winter period and those for period of no gage-height record, June 11 to July 21, which are poor. Some flow bypasses the gaging station through a natural overflow channel 0.8 mi (1.3 km) upstream and returns to river 0.5 mi (0.8 km) downstream. Overflow begins at stage of about 13.0 ft (4.0 m), discharge, 1,800 ft³/s (51.0 m³/s). These records include any flow in the overflow channel.

AVERAGE DISCHARGE.--36 years, 144 ft 3 /s (4. 078 m 3 /s), 104,300 acre-ft/yr (129 hm 3 /yr); median of yearly mean discharges, 114 ft 3 /s (3.23 m 3 /s), 82,600 acre-ft/yr (102 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,750 ft³/s (163 m³/s) July 18, 1968, gage height, 22.32 ft (6.803 m); maximum gage height, 23.37 ft (7.123 m) Apr. 3, 1966 (backwater from ice); no flow for part of Jan. 15, 1952 (caused by construction of concrete control), July 23 to Sept. 8, 1961, Dec. 22 to Mar. 10, 1977, and Sept. 9-11, 1980.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,880 ft 3 /s (53.2 m 3 /s) Apr. 18, gage height, 13.24 ft (4.036 m); minimum, 4.0 ft 3 /s (0.11 m 3 /s) Jan. 18-20, gage height, 4.64 ft (1.414 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

						MEAN VALU	ES					
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	16 22 32 46 59	51 51 52 52 52	33 31 29 28 22	6.7 6.9 6.9 7.4	4.9 4.9 4.9 4.8	5.7 5.7 5.9 6.0	100 100 95 90 85	254 232 216 204 198	90 78 69 61 54	16 15 15 20 40	35 30 29 30 26	38 35 31 28 25
6 7 8 9 10	64 70 78 70 69	50 48 48 46 46	26 31 27 24 22	7.4 7.4 7.4 7.4 7.2	4.7 4.6 4.6 4.6	6.1 6.1 5.9 5.8	80 7 5 70 65 60	210 219 207 198 184	48 48 44 46 57	130 170 160 150 130	27 24 25 23 18	21 13 13 14 12
11 12 13 14 15	66 65 66 69 74	46 44 46 46 44	22 22 21 20 18	7.2 6.3 5.5 5.1 4.8	4.4 4.3 4.2 4.2	5.7 5.8 5.9 5.0	200 350 600 900 1200	178 173 175 173 175	70 70 65 60 55	110 95 80 65 56	15 13 12 11 10	11 9.4 8.9 8.0 8.1
16 17 18 19 20	80 85 79 70 64	50 48 53 61 60	15 14 14 13	4.6 4.3 4.2 4.0 4.2	4.2 4.4 4.5 4.6 4.7	6.2 6.4 6.7 6.9 7.2	1400 1600 1820 1760 1430	187 204 245 282 310	50 46 43 40 37	50 47 44 42 39	9.0 8.2 9.5 9.8	8.7 8.4 8.6 7.7 7.5
21 22 23 24 25	59 57 53 50 46	48 61 44 40 38	12 13 12 11	4.2 4.3 4.4 4.6 4.6	4.8 5.0 5.1 5.2 5.3	7.4 7.5 7.7 7.9 8.1	1180 950 774 648 564	336 336 302 264 232	34 31 29 27 25	37 34 31 33 29	10 13 15 21 28	7.2 7.1 6.6 6.5 6.4
26 27 28 29 30 31	42 51 58 58 54 53	36 33 33 29 33	11 12 9.6 9.2 7.9 7.4	4.6 4.7 4.9 4.9 4.9	5.3 5.3 5.5 	8.3 8.5 9.1 11 30 100	487 422 347 313 285	211 177 155 141 121 102	23 21 19 18 17	34 32 35 38 39 37	40 45 47 46 44 41	5.9 6.0 11 17 35
TOTAL MEAN MAX MIN AC-FT	1825 58.9 85 16 3620	1389 46.3 61 29 2760	559.1 18.0 33 7.4 1110	172.6 5.57 7.4 4.0 342	132.7 4.74 5.5 4.2 263	327.6 10.6 100 5.7 650	18050 602 1820 60 35800	6601 213 336 102 13090	1375 45.8 90 17 2730	1853 59.8 170 15 3680	723.4 23.3 47 8.2 1430	425.0 14.2 38 5.9 843

MIN 1.2 MIN 4.0

AC-FT

26830

66320

05105300 ROSEAU RIVER BELOW ROSEAU, MN

LOCATION.--Lat 48°53'28", long 95°43'50", in SW\(\)3E\(\)4 sec.31, T.163 N., R.39 W., Roseau County, Hydrologic Unit 09020314, at bridge on County Highway 28, 900 ft (274 m) downstream from Hay Creek and 3.2 mi (5.1 km) northeast of Roseau.

PERIOD OF RECORD. -- Water years 1973 to current year.

REMARKS.--Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

		WATER Q	UALITY DA	TA, WATER	YEAR OCT	OBER 1981	TO SEPTE	MBER 1982		
DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (STAND-ARD UNITS) (00400)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
NOV	3.5.00	c li	200	272	0 (10.0	2.0	li o	33 7	90
02 DEC	1540	54	388	372	8.6	12.0	3.0	40	11.7	89
14 JAN	1545	25	440	347	7.8	•0	•0	30	11.0	79
25 Mar	1600	6.1	620	630	7.6	-20.0	.0	29	2.5	18
22 MAY	1515	9.5	510	519	7.2	.0	.0	20	4.2	30
25 JUL	1555	258	338	339	8.1	23.0	19.0	50	8.7	98
12 AUG	1545	124	305	315	8.2	29.0	23.0	40	8.0	98
31	1530	44		285	8.2	19.0	15.0	45	8.9	92
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
NOV				- 0					•	_
DEC DEC	К16	72	53	18	5.7	1.5	200	13	3.3	.1
14 JAN	K32	88	49	16	5•3	1.2	180	13	3.1	.1
25 MAR	230	K190	74	31	16	2.6	330	25	5.7	•2
22 MAY	440	>400	58	24	13	4.5	260	18	7 • 7	•1
25 JUL	120	К860	46	14	3.8	1.0	171	9.0	1.6	.1
12 AUG	120	400	43	14	3.6	• 7	160	5.0	1.5	•1
31	96	270	38	13	3.8	.6	147	4.0	1.0	.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS-PHORUS, ORTHO, DIS-SOLVED (MG/L AS P) (00671)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)
NOV 02	10	9	.06	1.0	<.010	<10	100	9		.4
DEC 14	8.6	56	.14		<.010	40	88	18	17	
JAN							84	270		
25 MAR	20	10	.19	1.2	.050	50			10	•5
22 MAY	18	24	•39	2.9	.470	70	100	110	19	1.1
25 JUL	7.7	54	<.10	1.7	•020	<10	77	19	23	.4
12 AUG	8.6	8	<.10	•90	.020	100	50	9	23	• 4
31	8.2	3	<.10	1.2	.020	110	43	11	19	.4

05106500 ROSEAU RIVER AT ROSEAU LAKE, MN

LOCATION.--Lat 48°54'22", long 95°49'55", in SWåSWå sec.28, T.163 N., R.40 W., Roseau County, Hydrologic Unit 09020314, at downstream side of bridge on County Road 123 at Roseau Lake, 3.5 mi (5.6 km) upstream from Pine Creek, 3.8 mi (6.1 km) downstream from Sprague Creek, and 7 mi (11 km) northwest of Roseau.

PERIOD OF RECORD. -- November 1939 to current year (incomplete).

GAGE.--Water-stage recorder. Datum of gage is 1,018.59 ft (310.466 m), adjustment of 1928 (levels by Geodetic Survey of Canada); gage readings have been reduced to elevations adjustment of 1928. Prior to Aug. 26, 1970, and Oct. 18, 1979 to Sept. 30, 1980, nonrecording gage at same site and datum.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation observed, 1,036.86 ft (316.035 m) May 13, 1950; minimum observed, 1,019.75 ft (310.820 m) Aug. 16, 1941.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in July 1919 reached an elevation of about 1,034 ft (315.2 m).

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,032.46 ft (314.694 m) Apr. 20; minimum, less than 1,021.74 ft (311.426 m) Sept. 11-28.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

					1.1	OUTA AUTO	100					
DAY	OC'T	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	22.90 23.69 24.02 24.24 24.52	23.30 23.22 23.18					29.20	30.43 30.16 29.91 29.69 29.47	24.48 24.17 23.82 23.44 23.08	22.05 21.95 21.88 21.85 22.38	23.57 23.42 23.26 23.05 22.78	22.32 22.25 22.19 22.16 22.12
6 7 8 9 10	24.69 24.73 24.69 24.64 24.56						28.94 28.33 28.15 28.57	29.23 29.00 28.77 28.53 28.31	22.85 22.80 23.04 23.19 23.78	23.94 24.84 25.13 24.94 24.59	22.59 22.73 23.28 23.32 23.14	22.05 21.98 21.86 21.76 21.74
11 12 13 14 15	24.52 24.45 24.59 24.88 24.96						29.10 29.86 30.29 31.25 31.85	28.06 27.83 27.57 27.32 27.27	24.26 24.33 24.11 23.89 23.69	24.27 23.97 23.52 23.24 22.90	22.88 22.58 22.34 22.17 22.04	
16 17 18 19 20	24.90 24.81 24.69 24.49 24.26						31.92 32.15 32.25 32.42 32.44	27.33 27.36 27.42 27.47 27.47	23.46 23.20 22.97 22.80 22.74	22.67 22.60 22.60 22.57 22.46	21.95 21.88 21.93 22.51 22.84	
21 22 23 24 25	24.04 23.83 23.65 23.47						32.43 32.37 32.27 32.12 31.96	27.45 27.38 27.26 27.02 26.72	22.75 22.65 22.51 22.39 22.29	22.35 22.32 22.26 22.88 23.39	22.67 22.55 22.54 22.49 22.41	
26 27 28 29 30 31	23.02 23.30 23.21 23.20 23.27 23.32						31.76 31.53 31.28 31.00 30.75	26.42 26.12 25.79 25.43 25.10 24.79	22.21 22.21 22.19 22.15 22.11	23.29 22.98 22.79 22.88 23.38 23.58	22.38 22.44 22.48 22.49 22.46 22.41	22.05
MEAN MAX MIN								27.68 30.43 24.79	23.12 24.48 22.11	23.11 25.13 21.85	22.63 23.57 21.88	

NOTE: Add 1,000 ft to obtain elevations in adjustment of 1928.

05107500 ROSEAU RIVER AT ROSS, MN

LOCATION.--Lat 48°54'37", long 95°55'18", in NE\set sec.27, T.163 N., R.41 W., Roseau County, Hydrologic Unit 09020314, on left bank 300 ft (91 m) downstream from highway bridge, 0.2 mi (0.3 km) north of Ross, and 2.3 mi (3.7 km) downstream from Pine Creek.

DRAINAGE AREA.--1,220 mi² (3,160 km²), approximately.

PERIOD OF RECORD .-- July 1928 to current year.

REVISED RECORDS.--WSP 1055: 1945. WSP 1175: Drainage area. WSP 1308: 1936(M). WSP 1508: 1948-49(P).

GAGE.--Water-stage recorder. Datum of gage is 1,018.44 ft (310.42 m), adjustment of 1928 (levels by Geodetic Survey of Canada). Prior to Mar. 13, 1929, nonrecording gage at same site and datum.

REMARKS .-- Records good except those for winter period, which are fair. High flow affected by natural storage in Roseau Lake.

AVERAGE DISCHARGE.--54 years, 262 ft 3 /s (7.420 m 3 /s), 189,800 acre-ft/yr (234 hm 3 /yr); median of yearly mean discharges, 235 ft 3 /s (6.66 m 3 /s), 170,000 acre-ft/yr (210 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, $6,560 \text{ ft}^3/\text{s}$ (186 m $^3/\text{s}$) May 12, 1950, gage height, 18.25 ft (5.563 m); no flow Aug. 29, 30, 1961, Jan. 3 to Mar. 3, 1977, Aug. 23-25, 1977 and Aug. 3, 1980.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, about 19 ft (5.8 m) in 1896. Other outstanding floods reached the following stages, from information by local residents: flood of July 1919, 17.5 ft (5.3 m); flood of 1927, about 16 ft (4.9 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,850 ft^3/s (52.4 m^3/s) Apr.21, gage height, 13.04 ft (3,975 m); minimum daily, 7.4 ft^3/s (0.21 m^3/s) Jan. 23-29; minimum gage height, 1.41 ft (0.430 m) Sept. 26.

		DISCHARG	E, IN CU	BIC FEET	PER SECO	ND, WATER MEAN VALU	YEAR OCT	OBER 1981	TO SEPTEM	IBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	108 201 250 277 313	163 156 150 147 144	95 92 88 85 82	15 15 14 13	7.5 7.5 7.5 7.5 7.5	8.6 8.7 8.8 8.9 9.0	100 100 100 100 100	1390 1320 1240 1190 1140	293 256 219 182 149	43 37 33 32 66	202 189 175 157 136	70 65 60 53 46
6 7 8 9 10	333 339 337 330 319	141 135 128 118 111	80 78 76 72 68	12 11 11 10 9.8	7.5 7.5 7.5 7.5 7.5	9.1 9.2 9.3 9.4 9.5	95 95 90 90 100	1080 1030 987 943 899	127 129 143 153 205	228 341 385 364 324	117 119 157 173 161	40 34 29 23 20
11 12 13 14 15	314 304 322 358 368	104 103 102 103 107	66 64 62 60 58	9.4 8.8 8.4 8.0 7.8	7.5 7.6 7.6 7.6 7.7	9.6 9.8 9.8 10	200 500 900 1100 1300	852 810 757 711 698	261 274 253 229 209	281 247 202 172 142	142 117 97 80 66	18 17 16 16 15
16 17 18 19 20	361 348 331 307 278	114 124 127 128 121	52 47 42 38 34	7.5 7.5 7.5 7.5 7.5	7.7 7.8 7.9 8.0 8.0	10 10 10 11	1450 1600 1700 1750 1810	702 703 713 717 717	188 164 143 127 121	117 107 105 101 94	54 42 38 68 107	15 14 14 14 14
21 22 23 24 25	250 225 205 184 160	120 120 118 114 108	29 27 25 23 22	7.5 7.5 7.4 7.4 7.4	8.1 8.2 8.2 8.3 8.3	11 11 11 11 12	1840 1830 1820 1790 1760	713 702 679 643 611	121 113 102 91 82	86 78 73 123 184	106 98 95 92 86	13 13 13 13
26 27 28 29 30 31	155 162 157 154 161 165	105 105 103 100 98	20 19 18 17 17	7 • 4 7 • 4 7 • 4 7 • 4 7 • 5 7 • 5	8.4 8.5 	13 14 16 20 30 60	1710 1660 1590 1510 1460	554 506 460 413 371 332	72 66 61 53 47	183 156 137 136 175 198	81 79 80 80 77 73	11 12 19 34 51
TOTAL MEAN MAX MIN AC-FT	8076 261 368 108 16020	3617 121 163 98 7170	1572 50.7 95 16 3120	284.5 9.18 15 7.4 564	218.8 7.81 8.5 7.5 434	400.7 12.9 60 8.6 795	30250 1008 1840 90 60000	24583 793 1390 332 48760	4633 154 293 47 9190	4950 160 385 32 9820	3344 108 202 38 6630	784 26.1 70 11 1560
CAL YR WTR YR						MIN 2.8 MIN 7.4	AC-FT AC-FT	86610 164100				

05112000 ROSEAU RIVER BELOW STATE DITCH 51, NEAR CARIBOU, MN (International gaging station)

LOCATION.--Lat 48°58'54", long 96°27'46", in SE\SW\ sec.34, T.164 N., R.45 W., Kittson County, Hydrologic Unit 09020314, on left bank 400 ft (122 m) downstream from State ditch 51 (known locally as Caribou cutoff ditch) and 0.6 m1 (1.0 km) west of Caribou.

DRAINAGE AREA.--1,570 mi² (4,070 km²), approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April to October 1917, April 1920 to current year (no winter records in water years 1931, 1932, 1934-36, 1938-40, 1944-72). Published as "at Caribou," prior to April 1929; as "below Cutoff ditch, near Caribou" April 1929 to September 1936. Records published for both sites April 1929 to September 1930. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1938(M). WSP 1508: 1917(M), 1920, 1932(M), 1934-35(M). WSP 1913: 1954(M).

GAGE.--Water-stage recorder. Datum of gage is 1,002.14 ft (305.452 m), adjustment of 1928, (levels by Geodetic Survey of Canada). Prior to Apr. 1, 1929, nonrecording gage at site at Caribou 0.6 mi (1.0 km) upstream at datum 0.95 ft (0.290 m) lower.

REMARKS.--Records fair except those for the winter period, which are poor. Occasionally, at high stages, there is some natural diversion of flow above station to headwaters of Two Rivers.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--25 years (water years 1921-30, 1933, 1937, 1941-43, 1973-82), 280 ft 3 /s (7.930 m 3 /s), 202,900 acre-ft/yr (250 hm 3 /yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,080 ft 3 /s (116 m 3 /s) May 19, 1950, gage height, 11.81 ft (3.600 m); no flow Aug. 13, 1936.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1916 is reported to have reached a stage of about 15.5 ft (4.72 m) at former site.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,660 $\rm ft^3/s$ (47.0 $\rm m^3/s$) Apr. 30 to May 2, gage height, 7.74 ft (2.359 m) May 1; maximum gage height, 8.11 ft (2.472 m) Apr. 15 (backwater from ice); minimum daily discharge, 12 $\rm ft^3/s$ (0.34 $\rm m^3/s$) Jan. 18 to Feb. 2.

		DISCHARGE	, IN	CUBIC FEET	PER SECOND	, WATER AN VALU	YEAR OCTO	BER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	96 127 211 286 319	274 238 223 215 234	150 150 145 145 140	23 22 21 20 20	12 12 13 13	16 16 16 16 16	95 120 150 160 160	1660 1650 1650 1630 1610	510 458 406 356 306	218 222 222 214 248	235 243 236 219 196	80 77 73 68 61
6 7 8 9 10	346 368 421 491 521	264 266 257 248 234	140 135 135 135 130	19 18 17 16 15	13 13 13 13	17 17 17 17 17	155 150 145 140 140	1570 1520 1490 1470 1470	269 250 246 267 304	389 463 512 538 533	180 159 139 153 180	56 54 47 40 35
11 12 13 14 15	524 532 552 553 565	226 217 213 213 214	130 130 130 125 125	15 14 14 13 13	13 13 13 13 13	18 18 18 18	200 300 400 600 770	1440 1400 1350 1310 1280	335 372 387 375 349	497 443 388 348 314	182 169 150 124 102	35 32 32 30 29
16 17 18 19 20	571 567 550 532 506	219 224 232 234 230	125 120 115 70 45	13 13 12 12 12	14 14 14 14 14	19 19 19 19	950 1180 1210 1250 1280	1250 1230 1200 1160 1110	319 293 262 239 227	282 249 212 182 154	78 63 56 50 44	25 25 23 24 22
21 22 23 24 25	472 435 399 370 340	220 210 205 195 190	40 37 34 32 30	12 12 12 12 12	14 14 15 15 15	20 20 20 20 20	1310 1350 1400 1460 1500	1070 1030 1010 978 935	214 210 202 188 173	138 115 98 174 265	72 114 116 110 101	23 21 23 24 24
26 27 28 29 30 31	302 301 300 300 298 298	180 175 165 160 155	29 28 27 26 25 24	12 12 12 12 12 12	15 15 15 	20 21 25 30 40 60	1550 1580 1620 1640 1660	889 830 763 694 626 567	156 147 196 225 220	282 269 243 221 209 216	95 87 80 81 81 82	23 26 36 40 37
TOTAL MEAN MAX MIN AC-FT	12453 402 571 96 24700	218 274 155	2852 92.0 150 24 5660	454 14.6 23 12 901	381 13.6 15 12 756	646 20.8 60 16 1280	24625 821 1660 95 48840	37842 1221 1660 567 75060	8461 282 510 147 16780	8858 286 538 98 17570	3977 128 243 44 7890	1145 38.2 80 21 2270

CAL YR 1981 TOTAL 53744.0 MEAN 147 MAX 739 MIN 3.5 AC-FT 106600 WTR YR 1982 TOTAL 108224.0 MEAN 297 MAX 1660 MIN 12 AC-FT 214700

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1972 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1973 to current year. WATER TEMPERATURES: October 1980 to September 1981.

INSTRUMENTATION .-- Water-quality minimonitor since October 1980.

REMARKS.--Extremes are published for those years with 80 percent or more record. Letter K indicates non-ideal colony count.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE (water year 1981): Maximum, 803 micromhos Jan. 21, 1981; minimum, 261 micromhos Mar. 30, Apr. 1, 2, 1981.
WATER TEMPERATURES (water year 1981): Maximum, 27.0°C July 19, 1981; minimum, 0.0°C several days during winter period.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 686 micromhos Feb. 8; minimum, 173 micromhos Apr. 3.
WATER TEMPERATURES: Maximum, 25.5°C July 20, 21; minimum, 0.0°C several days during winter period.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	BARO- METHIC PRES- SURE (MM OF HG) (00025)	TUR- BID- ITY (NTU) (00076)
NOV										
03 JAN	1110	225	370	365	8.4	8.0	10.0	4.0	737	4.6
26	1300	12	660	687	7.4	7.5	-17.0	.0	729	4.0
MAR 23	1030	19	530	554	7.2	7.4	•5	.0		2.5
MAY 25	1200	937	338	347	7.8	7.9	23.0	18.0	732	2.3
JUL 13	1400	389	365	375	8.1	8.0	20.0	23.0	735	4.5
AUG 31	1130	80	357	375	8.4	8.4	19.0	15.0	732	4.4

DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS (MG/L AS CACO3) (00900)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3) (95902)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)
NOV 03	11.0	87	К9	39	20 2	12	48	20	5.7	•2
JAN	11.0	07	K9	39	202	12	40	20	5.1	• 2
26 MAR	.6	4	31	180	356	.00	83	36	13	•3
23 MAY	1.2	9	К6	40	280	.00	66	28	12	•3
25 JUL	7.0	77	К8	K840	176	8.0	44	16	3.6	•1
13 AUG	6.2	75	48	550	194	2.0	48	18	4.8	•5
31	9.1	94	к56	530	200	11	47	50	5.2	.2

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DA	ate	POTAS SIUM DIS- SOLVE (MG/L AS K)	LINI LA D (MG AS CAC	TY 18 3/L 3 203)	SULF DIS SOL (MG AS S	- VED /L 04)	CHL RID DIS SOL (MG AS	E, VED /L CL)	FLU RID DI SOL (MG AS	E, S- VED /L F)	SILI DIS SOL (MG AS SIO	VED /L 2)	SOLII RESII AT 18 DEG DIS SOLI (MG,	DUÉ 80 . C S- VED /L)	SOLI SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED /L)	SOLI DI SOL (TO PE DA (703	S- VED NS R Y)
VON	7 3 	1.	5 190	1	1	4		3.5		.1	1	3		275		220	16	7
JAN		2.				6		4.2		.2		4		473		410		5•3
MAR		2.	•			5		4.3		.2		.9		353		327		7•9
MAY 25	·	2.				2		2.3		.1		6.2		246		188	62	
JUL 13	3	1.	0 192	2		8.0		1.9		.2	1	.0		274		207	28	8
AUG 31	• • •	1.	1 189	9	1	0		2.5		.2	1	.0		261		210	5	6.4
		NITRO GEN,	GE	RO- EN,	NIT GEN,	AM-			РНО		PHO PHOR	US,			SED MEN	Т,		SP.
DA	TE	NO2+NO DIS- SOLVED (MG/L AS N) (00631	DI SOLV (MO	IS- VED 3/L N)	MONI ORGA TOTA (MG AS (006	NIC L /L N)	PHOR PHOR TOTA (MG AS (006	US, L /L P)	PHOR DI SOLV (MG AS (006	S- ED /L P)	ORT DIS SOLVE (MG/ AS P (006	L)	SED: MEN! SUS- PENI (MG) (801!	r, DED /L)	DI CHAR SUS PEN (T/D (801	GE, - DED AY)	SIE DI FIN TH .062	AM. ER AN MM
NOV	, 3	.0	6 .	.050		. 24		030		010	۷.	010		30 -	1	8		94
JAN		.0		500		.40		080		050		050		92		3.0		90
		<.0	1 .	.460	1	.20		050		030		010		29		1.5		98
		<.1	0 .	.070	1	.10		090		060		040		23	5	7		92
		<.1	0 .	.100	1	.20		140		060		050		12	1	3		96
AUG 31	· • • •	<.1	0 .	0 20	1	.10		040	•	040	•	030		7		1.5		88
DATE NOV	TI	ME	RSENIC TOTAL (UG/L AS AS) 01002)	D SO (U AS	ENIC IS- LVED G/L AS) 000)	RE(ER (U) AS	IUM, FAL COV- ABLE 5/L BA)	DI: SOL' (UC AS		TO RE ER (U AS	MIUM TAL COV- ABLE G/L CD) 027)	D SO (U AS	MIUM IS- LVED G/L CD) 025)	REG ER (UG AS		MI DI SO (U	RO- UM, S- LVED G/L CR) 030)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO) (01037)
03 JAN	11	10	2		1		100		40		<1		<1	1	20		10	<1
26 May	13	00	3		3		<100		100		<1		<1		30		20	1
25 AUG		00	2		1		<100		39		<1		<1		10		10	2
31	11	30	3		3		<100		40		4		2	***	30		20	2
DATE	COBA DIS SOLV (UG AS (010	LT, ED /L CO)	OPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 01042)	DI SO (U AS	PER, S- LVED G/L CU) 040)	REG ER. (UG AS	ON, FAL COV- ABLE G/L FE) O45)	D) SO) (U) AS	ON, IS- LVED G/L FE) 046)	TO RE ER (U AS	AD, TAL COV- ABLE G/L PB)	SO: (U	AD, IS- LVED G/L PB) D49)	NES TO REC ER (UC AS	PAL COV- ABLE	NE D SO (U AS	NGA- SE, IS- LVED G/L MN) 056)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)
NOV 03		1	5		1		280		92		2		1	}	20		9	< . 1
JAN 26			7				1100		750		8				1700		9 1 7 00	.1
MAY 25		1	9		3		310		96		4		4		60		17	<.1
AUG 31		2	12		4		330		72		4		3		30		8	<.1
													-	1	-			

RED RIVER OF THE NORTH BASIN

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

PAC	S (PE #	ERCURY DIS- SOLVED (UG/L AS HG) (1890)	ERA (UG	AL OV- BLE /L NI)	NICKI DIS- SOL' (UG, AS 1	VED /L	SEL NIU TOT (UG AS (011	M, AL /L SE)	(UG	M, S- VED /L SE)	SILV TOT REC ERA (UG AS (010	AL OV- BLE /L AG)	SILV DI SOL (UG AS (010	S- VED /L AG)	ZIN TOT REC ERA (UG AS (010	AĹ OV- BLE /L ZN)	ZING DIS SOLY (UG, AS S	S- VED /L ZN)
VОИ 03.		<.1		3		1		<1		<1		<1		<1		40		<4
JAN 26.		<.1		6				<1		<1		<1		<1		30		30
MAY 25		<.1		4		1		<1		<1		<1		<1		40		3
AUG 31.		<.1		6		2		<1		<1		<1		<1		40		< 4
DATE	TIME	T((U(CB, OTAL 3/L) 9516)	TI LEI POI CHI TO' (UG)	PH- HA- NES, LY- LOR. FAL /L) 250)	TO (U	RIN, TAL G/L) 330)	DA TO (UG	LOR- NE, TAL /L) 350)	TO (U	DD, TAL G/L) 360)	TO (U	DE, TAL G/L) 365)	TO (U	DT, TAL G/L) 370)	AZI TO (U	I- NON, TAL G/L) 570)	DI- ELDRIN TOTAL (UG/L) (39380)
MAR 23	1030)	<.10		<.10		<.01		<.10		<.01		<.01		<.01		.01	<.01
MAY 25	1200)	<.10		<.10		<.01		<.10		<.01		<.01		<.01		.01	<.01
DATE	ENDO- SULFAN TOTAI (UG/I (39388	I, ENI TO	ORIN, OTAL UG/L) 9390)	TOT (U)	ION, FAL G/L) 398)	TO' (U	PTA- LOR, TAL G/L) 410)	CH EPO TO' (U	PTA- LOR XIDE TAL G/L) 420)	TO (U	DANE TAL G/L) 340)	TH TO (U	LA- ION, TAL G/L) 530)	Ó CH TO (U	TH- XY- LOR, TAL G/L) 480)	PA TH TO (U	THYL RA- ION, TAL G/L) 600)	METHYL TRI- THION, TOTAL (UG/L) (39790)
MAR 23	<.0	11	<.01		<.01		<.01		<.01		<.01		<.01		<.01		<.01	<.01
MAY 25	<.0		<.01		<.01		<.01		<.01		<.01		<.01		<.01		<.01	<.01
DAT	re (MIREX, TOTAL (UG/L) 39755)	TOT	ON, PAL P/L)	PE; THAI TOT; (UG; (390)	NE AL /L)	TO APHE TOT (UG (394	AL /L)	THI	I- ON /L)	TÓT	/L)	2, 4 TOT (UG/ (821	AL L)	2,4, TOT (UG (397	AL /L)	SILVI TOTA (UG) (397)	AL /L)
MAR 23.		<.01	<	.01	<	.10		<1	<	.01	<	.01	<	.01	<	.01	<	.01
MAY 25.		<.01		.01		.10		<1		.01		.01		.01		.01		.01
DAT	ΓE	TIME	TOT IN B TOM	MA- MA- IAL KG)	PCI TOT: IN BO TOM: TER: (UG/I	AL OT- MA- IAL KG)	ALDR TOT IN B TOM TER (UG/ (393	AL OT- MA- IAL KG)	DAN TOT IN B TOM	AL OT- MA- IAL KG)	DD TOT IN E TOM TER (UG/	AL OT- MA- IAL KG)	DD. TOT IN B TOM TER (UG/ (393	AL OT- MA- IAL KG)	DD TOT IN B TOM TER (UG/ (393	AL OT- MA- IAL KG)	DI- ELDRI TOTI IN BO TOM I TERI (UG/I	IN, AL OT- MA- IAL KG)
иоv 03.		1110		<1	<:	1.0		<.1	<	1.0		.6		<.1		<.1		<.1
MAY 25.	• • •	1200		<1	<	1.0		<.1	<	1.0		<.1		<.1		<.1		<.1
FAC	SI II TC TE (I	ENDO- JLFAN, POTAL N BOT- DM MA- ERIAL JG/KG) 39389)	ENDR TOT IN B TOM TERI (UG/	PAL BOT- MA- IAL 'KG)	HEPTOTALIN BOTTOM IN TERI (UG/1) (394	OR, AL OT- MA- AL KG)	HEP CHL EPOX TOT. BOT MAT (UG/	OR IDE IN TOM L. KG)	LIND TOT IN E TOM TERI (UG/	AL OT- MA- (AL (KG)	MET OXY CHL TOT. BOT MAT (UG/	OR, IN TOM L. KG)	MIR TOT IN B TOM TERI (UG/	AL OT- MA- AL KG)	PER- THAN IN BOTT MATER (UG/ (818	E OM IL KG)	TOX PHE TOT IN B TOM I TERI (UG/1	NE, AL OT- MA- AL KG)
NOV 03.		<.1		<.1		<.1		< . 1		< . 1		< . 1		<.1	,	.10	,	1.0
MAY 25.		<.1		<.1		<.1		<.1		<.1		<.1		<.1		.00	<1	

RED RIVER OF THE NORTH BASIN

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	A	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	IR			DECEMBE	R		JANUAR	Y
1 2	366 368	342 346	353 363	364 361	360 355	362 357		394 398	390 393	391 396			
3 4 5	361 356 34 7	354 343 326	357 347 337	355 352 361	351 348 344	352 349 350	1	403 406 421	398 402 406	401 404 415			
6	326	315	319	359	346	349		421	415	418			
7 8	323 344	313 323	318 334	354 356	347 351	350 354	ı	424 428	418 424	421 427			
9 10	343 344	338 341	340 342	355 359	352 353	353 355	1. 1	435 444	428 436	432 440			
11	347	344	345	361	359	360	1	448 448	444 445	446			
12 13 14	346 349 351	338 342 336	341 344 345	363 369 369	359 362	361 365 368	l	446 453 468	445 446 454	446 450 461			
15	348	328	338	370	368 368	369		486	468	475			
16 17	347 349	324 314	340 331	370 371	36 <i>7</i> 368	368 369	1	492 499	484 491	489 496			
18 19	349 349	346 343	348 346	369 366	366 363	368 364		507 524	500 506	504 514			
20	359	353	356	365	359	362		528	515	523			
21 22	359 358	356 348	358 352	369 374	359 369	364 372	į	514 502	501 498	508 499			
23 24	355 359	349 355	352 357	371 378	369 371	370 374	ı	499 497	496 494	497 496			
25 26	365 360	359 353	363 356	384 386	378 384	382 385		495 499	493 494	494 49.7			
27 28	356 362	353 353 355	354 358	395 398	386 393	392 396	5	503	499	501	654 655	650 653	652 654
29 30	372 371	361 362	367 367	399 398	396 393	397 396	_				656 655	655 652	655 654
31	365	362	363						***		653	653	653
MONTH	372	313	348	399	344	367							
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	ľ	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR	MEAN Y	MAX	MIN MARCH	MEAN	1	XAM	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1	653	FEBRUAR	Y 653	594	MARCH	592	3	302	APRIL 271	295	284	MAY 281	282
1 2	653 653 654	FEBRUAR 652 652 652	Y 653 653 653	594 591 591	MARCH 591 590 589	592 591 590		30 2 306 2 7 2	APRIL 271 229 173	295 264 209	284 288 289	MAY 281 282 284	282 285 286
1	653 653	FEBRUAR 652 652	Y 653 653	594 591	MARCH 591 590	592 591		302 306	APRIL 271 229	295 264	284 288	MAY 281 282	282
1 2 3 4 5	653 653 654 660 670 680	FEBRUAR 652 652 652 654 661 671	Y 653 653 657 656 675	594 591 591 590 592	MARCH 591 590 589 589 589	592 591 590 589 590	. 1	30 2 30 6 27 2 18 6 19 5	APRIL 271 229 173 176 190	295 264 209 181 192	284 288 289 294 296	MAY 281 282 284 290 291	28 2 28 5 28 6 29 2 29 4
1 2 3 4 5 6 7 8	653 653 654 660 670 688 6886 685	652 652 652 654 661 671 681 684	Y 653 653 657 666	594 591 591 590 592 593 594 599	MARCH 591 590 589 589 589 591 592	592 591 590 589 590	. 1	30 2 30 6 27 2 18 6 19 5 20 2 20 9 22 0	APRIL 271 229 173 176 190 199 205 213	295 264 209 181 192 200 207 217	284 288 289 294 296 297 297 299	MAY 281 282 284 290 291 295 295 296	28 2 28 5 28 6 29 2 29 4 29 6 29 8
1 2 3 4 5 6 7 8 9	653 653 6560 670 680 685 686 685 6886	652 652 652 654 661 671 681 684 683	9 653 653 653 657 666 675 683 685 684 683	594 591 590 592 593 594 599 603 608	MARCH 591 590 589 589 589 591 592 594 599	592 591 590 589 590 591 593 597 601		30 2 30 6 27 2 186 195 20 2 209 220 236 241	APRIL 271 229 173 176 190 199 205 213 225	295 264 209 181 192 200 207 217 230 233	284 288 289 294 296 297 297 299 298	MAY 281 282 284 290 291 295 296 296	28 2 28 5 28 6 29 2 29 4 29 6 29 6 29 8 29 7
1 2 3 4 5 6 7 8 9 10	653 653 654 6660 670 6885 6885 6885 6883	FEBRUAR 652 652 652 654 661 671 681 683 683 683	9 653 653 653 657 666 675 683 684 683 683	594 591 590 592 593 594 599 603 608 611	MARCH 591 590 589 589 589 591 592 594 599 603	592 591 599 599 590 591 593 5901 605 609		30 2 30 6 27 2 186 195 20 2 20 2 23 6 24 1 26 7 26 6	APRIL 271 229 173 176 190 199 205 213 225 225 225 261 247	295 264 209 181 192 200 207 217 230 233 264 256	284 288 289 294 296 297 297 299 297 298 299	MAY 281 282 284 290 291 295 296 296 296 297	28 2 28 5 28 6 29 2 29 4 29 6 29 6 29 8 29 7 29 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14	65540 65540 670 6886 6886 6886 6883 6883 6883 6885	652 652 652 654 661 671 681 684 683 682 682 682	9 653 653 653 657 666 675 683 684 683 683 683 684	594 591 590 592 593 594 599 603 608 611 613 613	MARCH 591 590 589 589 589 591 592 594 599 603 608	592 591 599 590 591 597 601 602 612 608		30 2 306 27 2 186 195 209 220 224 241 267 2253 234	APRIL 271 229 173 176 190 199 205 213 225 225 261 247 231 215	295 264 209 181 192 207 217 230 233 264 2543 222	284 288 289 294 296 297 2997 2997 2998 2990 2990 2990 2990 2990 2990 2990	MAY 281 282 284 290 291 295 296 296 296 297 297	28 2 28 5 28 6 29 2 29 4 29 6 29 8 29 6 29 7 29 7 29 8 30 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	653 653 6560 670 680 6885 6885 683 6884 6884	652 652 652 654 661 671 681 684 683 683 682 682 682	9 653 653 653 657 666 675 683 684 683 683 683 683 683 683	594 591 590 592 593 594 599 603 608 611 613 610 606	MARCH 591 590 589 589 591 592 594 599 603 608 610 606 597	592 591 599 599 591 593 597 601 602 612 608 603		30 2 30 6 27 2 18 6 19 5 20 2 22 20 23 6 24 1 26 7 26 6 25 3 23 4 21 9	APRIL 271 229 173 176 190 199 205 213 225 225 261 247 231 215 208	295 264 209 181 192 200 207 217 233 264 256 243 222 213	284 288 289 294 296 297 297 299 297 298 299 300 299 300 299 305	MAY 281 282 284 290 291 295 296 296 296 297 297 297 299	28 2 28 5 28 6 29 2 29 4 29 6 29 8 29 7 29 8 29 8 30 1 30 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6554 6554 667 6886 6886 6886 6886 6886 6886 6886	FEBRUAR 652 652 652 654 661 671 681 684 683 682 682 683 682	653 653 653 657 666 675 683 685 684 683 683 683 683 683 683 683	594 591 591 590 592 593 594 599 603 608 611 613 613 610 606	MARCH 591 590 589 589 589 591 592 594 599 603 608 610 606 597 586	592 591 599 599 599 593 597 600 609 612 608 603 591		30 2 30 6 27 2 186 195 20 2 209 2236 224 1 267 2253 2253 2219 213 215	APRIL 271 229 173 176 190 199 205 213 225 225 261 247 231 215 208	295 264 209 181 192 207 217 230 233 264 254 222 213 210 208	284 288 2894 296 297 2997 2997 2997 2997 300 305 310 318	281 282 284 290 291 295 296 296 296 297 297 297 299 301	282 285 286 292 294 296 298 296 297 298 297 298 301 303
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	65340 655340 6670 688653 6886 6886 6886 6886 6886 6886 68	FEBRUAR 652 652 654 661 671 681 6884 6883 682 6882 6882 6883 682 68683	653 653 653 657 666 675 683 683 683 683 683 683 683 683 683 684 683 683 684 683	594 591 590 592 593 594 599 603 608 611 613 610 606 585 573 560	MARCH 591 590 589 589 591 599 603 601 606 597 586 572 560 556	5991 5990 5990 5997 5997 6005 601228 6003 5980 5980 5980 5980 5980 5980 5980 5980		30 2 30 6 27 2 18 6 19 5 20 2 22 0 22 4 1 22 6 6 22 3 4 21 5 22 1 7 22 1 3 22 1 5 22 1 7 22 1	APRIL 271 229 173 176 190 199 205 213 225 261 247 231 215 208 208 208 208 208 209	295 264 281 192 200 207 217 233 264 256 243 222 213 210 208 224 217	284 288 289 294 296 297 2997 299 299 300 310 312 326	MAY 281 282 284 290 291 295 296 296 296 297 297 297 297 301 306 310 317 321	282 285 286 292 294 296 298 296 297 298 301 303 308 3120 324
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	653 653 6660 670 6886 6886 6886 6886 6886 6886	652 652 652 654 661 671 681 683 683 682 682 682 682 685 667 658 646	653 653 653 657 666 675 683 683 683 683 683 683 683 683 683 683	594 591 590 592 593 594 599 603 613 613 610 606 596 573 560 557	MARCH 591 599 589 589 591 5994 603 606 610 606 597 582 5556 5551	591 5990 5990 5990 5993 5901 5993 6005 60128 6003 59888 5555 5555		30 2 30 2 30 2 27 2 186 195 209 2206 241 267 265 34 215 227 225 2238	APRIL 271 229 173 176 190 199 205 213 225 225 261 247 231 215 208 208 208 209 212 238	295 264 209 181 192 200 207 217 230 233 256 243 222 213 210 208 224 217 228	284 288 289 296 297 2997 299 299 300 309 318 3226 333	MAY 281 282 284 290 291 295 296 296 296 297 297 297 297 301 306 310 317 321 327	282 285 286 292 294 296 298 297 297 298 301 303 3014 3120 324 330
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	33400 05653 33454 20578 64666 6666 6666 6666 6666 6666 6666 6	FEBRUAR 652 652 6554 661 671 6884 6883 682 6882 6882 6883 680 6757 6586 646 6355	9 653 653 653 657 666 675 683 683 683 683 683 683 683 683 683 684 683 683 684 683 683 684 683 683 684 683 684 683 684 683 684 683 684 683 684 684 684 684 684 684 684 684 684 684	594 591 590 592 593 594 5993 608 613 610 613 610 5985 5760 557 5549	MARCH 591 5989 589 589 591 5994 590 608 610 606 597 582 5555 544	5910 5910 5990 5990 5990 5990 5990 601288 59888 5955 5955 5955 5955 5955 5955		30 2 30 6 27 2 18 6 19 5 20 2 22 20 23 6 24 1 26 7 26 5 3 4 21 5 22 2 23 8 24 1 26 5 26 5 27 5 28 8 29 9 20 9 20 9 20 9 20 9 20 9 20 9 20 9	APRIL 271 229 173 176 190 199 205 213 225 225 261 247 231 215 208 208 208 208 209 212 238 240 245	295 264 209 181 192 200 207 217 233 266 243 2213 2108 2214 2128 240 240 240 240 240 240 240 240 240 240	284 288 2894 296 297 2997 2998 2993 305 318 3226 333 337 342	281 282 284 290 291 295 296 296 296 296 297 297 297 297 299 301 306 310 317 321 327	282 285 286 294 296 298 2997 298 2997 298 2901 303 303 308 314 324 333 338 340
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	6553400 6553400 6667 66886688 6886688 6886666 6656 6656	FEBRUAR 652 652 654 661 671 684 6883 682 6882 6882 6883 682 6883 682 6855	653 653 653 657 666 675 683 685 684 683 683 683 684 683 681 678 671 662 653 640 629	594 591 590 592 593 599 603 608 611 613 610 606 585 577 556 549	MARCH 591 599 589 589 591 5994 603 606 610 606 597 582 5556 5551	5991 5990 5990 5997 5997 5900 601228 6003 5986885 5555 5547		30 2 30 6 27 2 186 195 200 223 24 1 267 265 27 215 2225 2238 241 2244	APRIL 271 229 173 176 190 199 205 213 225 261 247 231 215 208 208 208 209 212 238 240	295 264 209 181 192 2007 217 233 264 253 222 213 210 208 2217 228 240 242	284 288 2894 296 297 2997 299 299 300 310 318 2326 333 337 340	MAY 281 282 284 290 291 295 296 296 296 297 297 297 297 301 306 310 317 321 327	282 285 285 286 294 296 298 2997 298 2997 298 301 301 301 301 301 301 301 301 301 301
1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 1 7 1 1 8 9 2 2 2 3 4 5 2 6	653466666666666666666666666666666666666	FEBRUAR 652 6552 6554 661 671 6881 6883 6882 6883 6882 6883 6882 6877 6586 646 6355 6411 605	653 653 653 657 666 675 688 683 688 683 688 683 688 683 681 662 671 662 671 662 671 662 671 662	594 591 590 592 593 594 599 608 611 613 610 6 585 577 5549 5345 557 5549 5525	MARCH 591 5990 5899 589 591 5994 5993 608 610 606 597 5862 5555 5484 55328	5910999 599105 599715 599715 599715 661283 5988885 55555 5544323 5988885 5988885 5988885 5988885 5988885 5988885 5988885 5988885 5988885 5988885 5988885 5988885 5988885 5988885 5988885 59888885 5988885 59888885 598885 59885 59885 59886 59886 59885 59886 59		30 2 30 6 27 2 18 6 19 5 20 2 22 20 22 36 22 20 23 6 24 1 26 7 26 7 27 5 28 2 29 2 20 2 21 5 22 2 23 8 24 1 26 7 26 7 27 5 28 8 29 9 20	APRIL 271 229 173 176 190 199 205 213 225 261 247 231 215 208 208 208 208 209 212 238 240 245 257	295 264 281 192 200 207 2130 233 266 243 2213 2108 2217 228 245 245 258 258 258 258 258 258 258 258 256	2848 2889 2996 299978 299978 2909925 2909925 2909925 33333333333333333333333333333333333	281 282 284 290 291 295 296 296 296 296 297 297 297 299 301 306 310 317 321 327 333 337 338 340 339	282 285 285 2994 2966 2996 2996 2997 2988 3013 3014 31204 3134 3134 3141 3140
1 2 3 4 5 6 7 8 9 10 11 2 3 1 4 5 16 17 8 19 20 21 22 3 4 5 27 28	65340 65340 6660 6886 6886 6886 6886 6886 6886 68	652 652 6552 6651 671 681 684 683 682 6882 6882 6883 6882 6883 6883 6	653 653 653 657 666 675 688 688 688 688 688 688 688 688 688 68	591 591 5990 5992 5993 5999 6008 61133 6100 6100 6133 5575 5575 5599 5599 5599 5599 5599 55	MARCH 591 5989 5889 5994 590 600 600 587 5055 544 5322 509	5991 5990 5990 5997 5990 5997 5990 6012283 5986885 5955 59555 5955 5955 59555 59555 59555 59555 59555 59555 59555 59555 59555 59555 59		306 272 306 2786 195 2200 231 2215 22238 2157 2238 2215 2228 2215 2228 2215 2228 2215 2228 2215 2228 2229 2238 2238 2238 2238	APRIL 271 229 173 176 190 199 205 213 225 261 247 231 215 208 208 208 209 212 238 240 245 257 255 260 270	295 264 281 192 200 207 217 233 266 224 221 210 202 217 228 240 225 228 240 225 225 225 225 225 225 225 225 225 22	2848 2889 2996 299978 299978 2909925 2909925 2909925 33333333333333333333333333333333333	MAY 281 282 284 290 291 295 296 296 297 297 297 297 301 306 310 317 327 333 337 338 340 339	282 285 285 2994 2966 2996 2996 2997 2988 3013 3014 31204 3134 3134 3141 3140
1 2 3 4 5 6 7 8 9 10 11 2 3 1 4 5 16 17 18 19 0 21 22 3 24 25 26 27 8 29	653466666666666666666666666666666666666	FEBRUAR 652 6552 6554 661 671 6881 6883 6882 6882 6883 6882 6885 6677 6586 646 6355 6111 605 600 5973	653 653 653 657 666 675 688 688 688 688 688 688 688 688 681 662 671 662 671 662 671 667 671 671 671 671 671 671 671 671	594 591 5990 5992 5994 5993 6008 6113 6106 5985 5560 557 5549 4955 518 4955 515	MARCH 59899 55889 5999993 6010667 55555 55555 5443222 79917 34383	2109999 13715 92283 107223 317744 5991099 13715 92283 107233 317744		306 2 307 2 2186 2 2186 2 2206 2 2206 2 2206 3 2157 2 22157 2 2215	APRIL 271 229 173 176 190 199 205 213 225 225 225 247 231 215 208 208 208 209 212 238 249 212 238 249 212 238 245 256 257 255 260 270 274 278	295 264 281 192 2007 2130 233 255 242 217 228 245 255 255 267 276 280	2888946 779978 90925 08263 70223 533866 2888946 3779978 93233 333333 335366	MAY 281 282 284 290 291 295 296 297 297 299 301 306 3117 327 337 337 3340 337 3340 3356 345 364	2856224 2856229 299867 299813 2999900 299900 299900 3333444 445660 33333333333333333333333333333333333
1 2 3 4 5 6 7 8 9 10 11 2 3 1 4 5 16 17 8 19 20 21 22 3 4 5 27 28	653466666666666666666666666666666666666	FEBRUAR 652 652 6554 661 671 6884 6883 6882 6882 6883 6882 6883 6882 6883 6882 6883 6882 6883 6882 6883 6882 6883 6882	653 653 653 657 666 675 688 688 688 688 688 688 688 688 681 678 671 662 653 640 621 614 607	594 591 5990 5993 5993 5993 608 611 613 6106 5985 57607 55494 5555 5555 5594 4955	MARCH 591 5989 5889 5899 599493 6610659 6610659 67 5876661 8449881 59322 599137	210999999999999999999999999999999999999		306 307 2186 1195 209 2236 2236 2236 2319 2258 2414 2258 2445 2270 2278 2278	APRIL 271 229 173 176 190 199 205 213 225 247 231 215 208 208 208 209 212 238 240 245 256 257 255 260 270 274	295 264 281 290 2007 2130 2007 2130 2233 254 2213 2108 22178 240 2255 225 227 227 227	2888946 779978 90925 08263 70223 533833 333443 53366	MAY 281 282 284 290 291 295 296 297 297 297 297 301 306 317 321 337 338 337 338 337 338 337 338 337 338 337 338	285624 2856299 29986 299900 299900 299900 299900 3333444 44566 33566

RED RIVER OF THE NORTH BASIN

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	,	MAX	MIN	MEAN	МА	X	MIN	MEAN
		JUNE			JULY				AUGUST				SEPTEMBI	ER
1 2 3 4 5	430 373 375 371 372	367 367 370 365 365	374 370 373 368 368	415 415 416 419 414	401 411 411 413 394	407 413 413 416 402		404 405 405 405 405	402 404 403 404 404	403 404 404 404 404				
6 7 8 9 10	378 380 379 379 381	369 372 375 374 375	373 378 377 376 378	393 384 387 387 383	383 375 379 380 364	387 380 383 383 379		405 405 405 405 405	404 404 404 404 404	404 404 404 404 404				
11 12 13 14 15	381 357 351 338 347	360 348 330 330 338	373 351 339 334 344	362 366 365 367 371	359 361 362 361 366	360 364 364 363 368		405 405 405 405 405	404 404 404 404 404	404 404 404 404 405				
16 17 18 19 20	349 354 353 353 363	344 349 349 349 354	348 352 351 351 359	378 378 381 382 388	370 374 377 376 380	373 376 378 379 383		405 	404 	405 				
21 22 23 24 25	365 362 364 365 363	360 359 358 361 359	363 361 361 363 361	388 389 397 388 379	383 386 387 376 375	386 388 390 382 377								
26 27 28 29 30 31	371 377 399 409 407	360 368 369 398 402	366 372 386 404 404	389 387 390 403 404 404	373 384 385 386 402 402	381 385 388 397 403 403		 						
MONTH	430	330	366	419	359	386								

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	8.5 9.0 9.0 9.0	6.5 7.5 8.0 8.5 8.5	7.5 8.0 8.5 9.0 9.0	4.5 4.5 5.0 6.0 6.0	4.0 3.5 3.5 4.5 4.5	4.5 4.5 5.5 5.5	.0 .0 .0	.0 .0 .0	.0 .0 .0			
6 7 8 9 10	9.0 9.0 9.5 9.0	8.0 8.5 9.0 9.0	8.5 8.5 9.0 9.0	4.5 4.5 3.5 1.5	3.5 3.5 .0 .5	4.0 4.0 2.0 1.0	.0 .0 .0	.0 .0 .0	.0 .0 .0		 	
11 12 13 14 15	10.0 10.0 10.0 9.5 9.0	9.0 10.0 9.5 9.0 8.5	9.5 10.0 10.0 9.0 9.0	1.0 2.0 1.0 4.0 4.0	.0 .0 .0 3.0 3.5	•5 •5 •5 3•5 4•0	.0 .0 .0 .0	.0 .0 .0	.0 .0 .0	 	 	
16 17 18 19 20	9.0 9.0 8.0 6.5 6.5	8.5 8.0 6.0 5.5 5.5	9.0 9.0 7.0 6.0 6.0	3.5 2.5 2.0 1.5	•5 •5 •0 •0	1.5 .5 .5 .5	.0 .0 .0	.0 .0 .0	.0 .0 .0			
21 22 23 24 25	5.0 3.5 2.0 1.0	3.5 2.0 1.0 .0	4.5 3.0 1.5 .5	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0 .0	.0 .0 .0	.0 .0 .0			
26 27 28 29 30 31	.0 1.0 2.5 4.0 5.0	.0 1.0 2.0 4.0	.0 .5 1.5 3.0 4.5 5.0	.0 .0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 	.0 .0 	.0 .0 	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0
MONTH	10.0	•0	6.5	6.0	•0	1.5						

RED RIVER OF THE NORTH BASIN

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAF	RY		MARCH			APRII	ı		MAY	
1 2 3 4 5	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	14.0 15.5 17.0 17.0	11.0 13.5 14.5 15.5 13.5	12.0 14.0 15.5 16.5 14.0
6 7 8 9 10	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	•5 •5 •5 •5	•5 •5 •5 •5	•5 •5 •5	13.5 11.5 11.0 11.0	11.5 9.5 9.0 10.0 9.5	12.5 10.0 10.0 10.5 9.5
11 12 13 14 15	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	1.0 1.0 1.5 3.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0	11.0 12.0 12.0 12.0 13.0	9.5 11.0 11.5 11.5 12.0	10.0 11.5 11.5 12.0 12.5
16 17 18 19 20	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	6.0 7.0 7.5 7.0 6.0	3.5 5.0 6.0 6.0	5.0 6.0 7.0 6.5 5.5	13.5 13.5 14.0 14.0	13.0 12.5 13.5 13.5 13.0	13.0 13.0 14.0 14.0
21 22 23 24 25	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	6.5 8.0 10.5 12.5 12.5	5.0 6.0 8.0 10.5 10.0	5.5 7.0 9.0 11.0	15.5 16.5 17.5 18.5 19.0	14.0 14.5 15.5 16.5 18.0	15.0 15.5 16.5 17.5 18.5
26 27 28 29 30 31	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0 .0	.0 .0 .0	.0 .0 .0	10.0 10.5 11.0 11.0	8.5 8.5 9.5 10.0 9.5	9.0 9.5 10.0 10.5	20.0 21.5 22.5 23.0 21.5 18.5	18.0 19.5 21.0 21.5 19.0 16.5	19.0 20.5 22.0 22.0 20.0 17.5
MONTH	.0	.0	.0	•0	•0	.0	12.5	•0	4.5	23.0	9.0	14.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST	ı		SEPTEMB	ER
1 2 3 4 5	16.5 16.5	14.5	15.0	23.0	10 5		21.5					
,	17.5 18.0 17.0	13.5 15.0 15.5 16.0	15.0 15.0 16.5 16.5 16.5	21.5 23.5 23.5 22.0	19.5 20.5 20.0 21.5 20.5	21.0 21.0 21.5 22.5 21.5	21.0 21.0 21.0 21.0	21.0 21.0 21.0 21.0 21.0	21.0 21.0 21.0 21.0			
6 7 8 9	17.5 18.0 17.0 16.5 15.5 14.0 13.5	13.5 15.0 15.5	15.0 16.5 16.5 16.5	21.5 23. 5	20.5 20.0 21.5 20.5 20.5 20.5 19.5 20.0	21.0 21.5 22.5	21.0 21.0 21.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	21.0 21.0 21.0			
6 7 8 9	17.5 18.0 17.0 16.5 15.5 14.0	13.5 15.0 15.5 16.0 14.0 13.0 12.5	15.0 16.5 16.5 16.5 16.0 15.0 13.5 13.0	21.5 23.5 23.5 22.0 23.0 22.5 21.0 21.5	20.5 20.0 21.5 20.5 20.5 20.5 19.5 20.0	21.0 21.5 22.5 21.5 21.5 21.5 20.5 20.5	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0			
6 7 8 9 10 11 12 13 14	17.5 18.0 17.0 16.5 15.5 14.0 13.5 16.0 18.0 17.5 17.5	13.5 15.0 15.0 16.0 14.0 13.0 12.5 12.0 15.0 15.0 17.0	15.0 16.5 16.5 16.0 15.0 13.5 13.0 13.5	21.5 23.5 22.0 23.0 22.5 21.0 21.5 21.5 23.0 24.0 23.5 23.0	20.5 20.0 21.5 20.5 20.5 19.5 20.0 20.0 20.0	21.0 21.5 22.5 21.5 21.5 20.5 20.5 21.0 21.5 23.0 22.5 21.5	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0			
6 7 8 9 10 11 12 13 14 15 16 17 18	17.5 18.0 17.0 16.5 15.5 14.0 13.5 16.0 18.0 17.5 19.5 20.0 20.0 19.5 19.0 18.0	13.5 15.0 16.0 14.0 13.0 12.5 12.0 15.5 17.5 17.5 17.5 17.5 17.5	15.0 16.5 16.5 16.5 16.0 15.0 13.5 13.0 13.5 16.5 18.0 18.5 18.5 18.5	21.5 23.5 22.0 23.5 21.0 21.5 21.5 23.0 24.0 23.5 24.0 24.0 22.0 23.0	20.5 20.0 21.5 20.5 20.5 19.5 20.0 20.0 20.5 22.0 20.5 22.0 21.5 22.0 21.5 22.0	21.0 21.5 21.5 21.5 20.5 20.5 21.0 21.5 22.5 21.5 22.5 22.5 22.5 22.5 22.5	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0			
6 77 8 9 10 11 12 13 114 15 16 17 18 19 20 21 22 23 24	17.5 18.0 17.0 16.5 15.5 14.0 13.5 16.0 18.0 17.5 19.5 20.0 20.0 18.0 17.5	13.5 15.0 16.0 14.0 13.0 12.5 15.5 17.5 17.5 17.5 16.5 16.5 16.5 16.5 17.5 17.5 16.5 16.5 16.5 17.5 17.5 17.5 18.5	15.0 16.5 16.5 16.5 16.0 13.5 13.5 13.5 16.5 18.0 18.5 18.5 18.5 18.5 18.5 17.0 16.5	21.55 23.50 23.55 22.05 21.05	20.5 20.5 20.5 20.5 19.5 20.0 20.0 20.5 22.0 22.0 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5	21.0 21.5 21.5 21.5 20.5 20.5 21.0 21.5 22.5 21.5 22.5 21.5 22.5 22.5 22.5	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0			

05124480 KAWISHIWI RIVER NEAR ELY, MN

(Hydrologic bench-mark station)

LOCATION.--Lat 47°55'22", long 91°32'06", in SELSEL sec.24, T.63 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on left bank upstream from rapids, 2 mi (3 km) upstream from South Kawishiwi River, 2.2 mi (3.5 km) southwest of Fernberg Lookout Tower and 14 mi (23 km) east of Ely.

DRAINAGE AREA.--253 mi² (655 km²).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1966 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 1,450 ft (442 m), from topographic map.

REMARKS .-- Records fair.

AVERAGE DISCHARGE.--16 years, 217 ft 3 /s (6.145 m 3 /s), 11.65 in/yr (296 mm/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 1,720 ft^3/s (48.7 m^3/s) Apr. 24, 1976, gage height, 5.92 ft (1.804 m); minimum 4.5 ft^3/s (0.13 m^3/s) Jan. 30 to Feb. 2, 1977, gage height, 2.14 ft (0.652 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,110 ft 3 /s (31.4 m 3 /s) May 19, gage height, 5.40 ft (1.646 m); minimum, 29 ft 3 /s (0.82 m 3 /s) Oct. 1, gage height, 2.80 ft (0.853 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

			,			MEAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	33 33 31 31 32	94 94 94 92 94	97 96 96 96	76 76 75 74 74	61 60 60 60	49 49 49 48 48	46 45 52 53 51	378 412 453 502 602	735 696 658 626 590	169 163 165 165 163	125 118 115 113 111	68 69 67 63 62
6 7 8 9 10	36 34 34 32 33	94 96 94 92 91	94 94 94 92 91	74 73 72 72 72	59 58 58 58 58	48 47 47 47 46	50 47 47 46 46	670 728 775 808 876	553 525 497 475 475	169 179 174 172 176	107 105 105 107 103	63 62 58 56 56
11 12 13 14 15	33 33 37 46 47	91 91 92 94 94	91 91 90 90 88	71 70 70 70 69	57 56 56 56 55	48 47 50 48 48	46 46 45 47 51	946 981 1020 1050 1060	453 438 412 397 378	174 182 194 206 210	102 99 96 94 94	56 60 69 64
16 17 18 19 20	47 54 66 68 73	94 94 92 92 90	86 85 85 84 82	68 68 67 67	55 54 54 54 53	47 46 46 47 46	58 67 67 69 73	1070 1070 1090 1100 1100	363 349 331 308 296	210 203 192 184 179	91 86 86 86 85	64 65 68 67 68
21 22 23 24 25	74 77 79 81 82	90 90 90 90 90	85 85 84 82 80	66 65 65 64	53 52 52 51 51	46 46 45 44 44	76 84 99 125 152	1080 1050 1020 996 960	275 262 247 240 229	172 167 158 154 150	84 86 88 86 84	67 65 65 65
26 27 28 29 30 31	82 84 86 90 91 92	94 99 99 97 97	80 79 78 78 77 77	64 64 63 62 62	50 50 50 	44 44 42 42 42 45	313	932 897 856 822 808 775	216 206 194 186 179	146 141 135 134 135 128	81 77 73 72 72 69	68 69 70 70 70
TOTAL MEAN MAX MIN CFSM IN.	1751 56.5 92 31 .22 .26	2795 93.2 99 90 .37 .41	2703 87.2 97 77 .35 .40	2129 68.7 76 62 .27	1552 55.4 61 50 .22 .23	1435 46.3 50 42 .18	45	26887 867 1100 378 3.43 3.95	11789 393 735 179 1.55 1.73	5249 169 210 128 .67	2900 93.5 125 69 .37 .43	1948 64.9 70 56 .26
CAL YR WTR YR			MEAN 214 MEAN 176		1210 1100	MIN 25 MIN 31	CFSM .85 CFSM .70	IN 11.47 IN 9.42				

NOTE .-- No gage-height record Dec. 25 to Mar. 9.

05124480 KAWISHIWI RIVER NEAR ELY, MN--Continued (Hydrologic bench-mark station)

WATER-QUALITY DATA

PERIOD OF RECORD. -- Water years, 1968 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURES: July 1966 to September 1981.

REMARKS.--Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	FL INS TAN (C	EAM- COW, COM, COM, DOW, DOW, DOW, DOW, DOW, DOW, DOW, DOW	PE- C IFIC (ON- D UCT- A) NCE (MHOS) (U		PH (UNITS) (00400)	PH LA (UNI (004	i AB ITS) (TEMPER- ATURE, AIR (DEG C) (00020)	A.C.	MPER- CURE EG C) DO10)	ME PR S (MM OF G)	DXYGEN, DIS- SOLVED (MG/L) (00300)
ОСТ 14	1200		47	32	31	7.5		7.1	10.0		10.5			10.0
MAR 10	1230		46		29	7.3		7.0	•0		•0		721	12.8
JUN 15	1425		372	<50	32	7.5		7.3	18.5		18.0		719	9.1
AUG 04	1110		113	34	34	7.5		7.7	18.5		21.5		723	7.8
DATE	OXYGE DIS SOLV (PEE CEN SATIO ATIO	S- VED R- NT UR- ON)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS (MG/I AS CACO3	BONA (MG AS () CACO	S AR- TE /L 3)	CALCIU DIS- SOLVE (MG/I AS CA	IM SI DI CD SOL (MG	MG)	SODI DIS SOLVI (MG AS 1	- ED /L NA)	SODIU AD- SORP- TION RATIO	-
OCT 14 MAR	•	95	K2	K14	1	13	.00	2.	9	1.4		1.1		1
10 JUN	•	93	<100	48	1	14 4	.0	3.	3	1.5		1.2	•	1
15 AUG	. 1	102	K2	K150	1	13 3	• 0	2.	9	1.4		1.0	•	.1
04	•	93	к6	K1100	1	13 1	.0	3.	1	1.3		1.2		1
DATE	POTA SIU DIS SOLV (MG/ AS A	JM, S- VED /L K)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVE (MG/I AS CI	RID DI ED SOL (MG L) AS	E, S- VED /L F)	SILICA DIS- SOLVE (MG/L AS SIO2)	AT 1 D DEG DI SOL (MG	DUÉ 80 . C S- VED /L)	SOLI SUM (CONS' TUEN' DI. SOL' (MG,	OF TI- TS, S- VED /L)	SOLIDS DIS- SOLVE (TONS PER DAY)	D S
ОСТ 14	•	.2	15	3.1	•	.6	<.1	3.	0	42		21	5.3	;
MAR 10 JUN	•	. 4	10	2.5	•	.8	<.1	3•	5	41		19	5.1	•
15 AUG	•	•3	10	5.0		.9	<.1	3•	8	38		21	38.2	2
04	. ‹	<.1	12	4.0		.3	<.1	3.	3	44		20	13.4	
DATE	NITF GEN NO2+N TOTA (MG/ AS N	1, 103 L /L 1)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO GEN, AMMONI DIS- SOLVE (MG/I AS N) (00608	GEN, A MONI ORGA TOT (MG	AM- A + NIC AL /L N)	NITRO GEN, AM MONIA ORGANI DIS. (MG/L AS N) (00623	+ PHO C PHOR TOT (MG	US, AL /L P)	PHOR PHOR DI SOL (MG AS	US, S- VED /L P)	CARBON ORGANI TOTAL (MG/I AS C) (00680	ć ,
OCT 14 MAR		.06	.06	•020	.02	20	.48	. 4	8 .	0 20	•(010	6.	9
10 JUN		.12	.12	.080	•04	10	•35	•3	1 .	010	• (010	9.	8
15 AUG		.20	<.10	•020	•03	30	.60	.6	0 .	040	• (010	12	
04	. <.	.10	<.10	.010	.01	LO	.20	. 2	0 .	010	<.0	010	9.	6

05124990 FILSON CREEK NEAR ELY, MN

LOCATION.--Lat 47°50'05", long 91°40'27", in SEASWA sec.24, T.61 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on right bank 25 ft (7.6 m) upstream from culverts on Forest Route 181, also known as Spruce Road, 0.8 mi (1.3 km) upstream from mouth, and 10 mi (16 km) southeast of Ely.

DRAINAGE AREA. -- 9.66 mi² (25.02 km²).

PERIOD OF RECORD. -- October 1974 to current year.

REVISED RECORDS. -- WDR MN-79-1: 1975-76, 1978.

GAGE.--Water-stage recorder. Altitude of gage is 1,440 ft (439 m), from topographic map.

REMARKS .-- Records fair except those for winter period, which are poor.

AVERAGE DISCHARGE.--8 years, 7.48 ft 3 /s (0.212 m 3 /s), 10.52 in/yr (267 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 426 ft 3 /s (12.1 m 3 /s) Sept. 13, 1980, gage height, 8.87 ft (2.704 m); no flow at times most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 89 ft 3 /s (2.52 m 3 /s) Apr. 23, gage height, 6.46 ft (1.969 m); maximum gage height, 7.70 ft (2.347 m) Apr. 20, from high-water mark (backwater from ice); minimum discharge, 0.15 ft 3 /s (0.004 m 3 /s) Aug. 18, gage height, 4.63 ft (1.411 m).

		DISCHARGE	, IN CU	JBIC FEET	PER SEC	OND, WATER	YEAR OCTO	BER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MEAN VALU MAR	DES APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.4 1.7 1.3 1.4	8.7 7.3 7.1 6.2 6.2	2.2 2.1 2.1 2.1 1.9	1.9 1.9 1.9 1.9	.50 .50 .50 .50	.36 .36 .31 .36	2.0 1.8 1.7 1.6 1.5	28 25 23 22 25	20 19 17 15 12	.52 .62 .97 1.2 1.6	.71 .64 .51 .42	•31 •36 •36 •31 •31
6 7 8 9 10	3.8 2.2 2.1 1.4 2.5	5.6 4.5 4.2 4.0 3.6	2.1 2.1 2.1 2.1 2.1	1.9 1.8 1.7 1.6 1.5	• 45 • 45 • 45 • 45	.42 .26 .26 .26	1.5 1.5 1.5 1.5	25 27 29 28 34	10 8.7 7.0 6.1 7.6	2.9 8.7 12 13 16	•37 •48 •55 •70 •70	.22 .22 .22 .22
11 12 13 14 15	2.8 2.2 4.5 11	3.0 3.1 3.1 2.8	2.1 2.0 2.0 2.0 2.0	1.4 1.3 1.3 1.2	.40 .40 .40 .40	.31 .36 .48 .42	1.6 1.7 2.0 3.5 5.0	59 65 65 61 54	8.3 8.5 7.9 6.6	17 16 14 12	•55 •55 •48 •42	.22 .70 1.2 1.2
16 17 18 19 20	8.0 13 18 18 20	2.2 2.5 2.5 2.5 2.1	2.0 2.0 2.0 2.0 2.0	1.0 .95 .90 .85	.40 .40 .40 .40	.42 .36 .42 .42	7.0 10 15 20 30	49 43 43 48 45	6.6 5.8 4.4 3.5 2.4	9.0 7.3 5.4 3.9 3.2	.31 .22 .18 .26	1.4 1.7 1.9 2.1 2.2
21 22 23 24 25	18 17 15 14 13	2.1 2.1 1.9 2.0 2.1	2.0 2.0 2.0 2.0 2.0	.75 .70 .65 .65	.40 .36 .36 .36	.80 .75 .75 .70	55 70 82 62 61	38 32 27 23 2 0	2.1 2.2 2.5 2.4 1.7	2.6 1.8 1.5 1.6	.22 .55 .55 .42	2.2 2.2 2.2 2.1 1.7
26 27 28 29 30 31	12 10 10 9.7 10 9.5	2.3 2.3 2.2 2.2 2.3	2.0 2.0 2.0 2.0 2.0 1.9	.60 .60 .60 .55 .55	•36 •36 •36 	.65 .60 .60 .65 .80	58 49 41 36 31	17 13 10 9.2 13	1.2 .99 .89 .78 .57	1.2 1.1 .90 .96 .92	.42 .36 .26 .31 .31	1.7 1.4 1.3 1.2 1.2
TOTAL MEAN MAX MIN CFSM IN.	266.4 8.59 20 1.3 .89 1.03	105.7 3.52 8.7 1.9 .36	62.9 2.03 2.2 1.9 .21 .24	35.65 1.15 1.9 .55 .12	11.67 .42 .50 .36 .04	15.37 .50 1.0 .26 .05	656.9 21.9 82 1.5 2.27 2.53	1019.2 32.9 65 9.2 3.41 3.92	197.93 6.60 20 .57 .68	171.16 5.52 17 .52 .57	13.20 .43 .71 .18 .05	33.87 1.13 2.2 .22 .12 .13
CAL YR WTR YR					1AX 68 1AX 82	MIN .09 MIN .18	CFSM .81 CFSM .74	IN 11 IN 9				

NOTE .-- No gage-height record Jan. 12 to Mar. 1.

05127000 KAWISHIWI RIVER NEAR WINTON, MN

LOCATION.--Lat 47°56'05", long 91°45'50", in NEANWA sec.20, T.63 N., R.11 W., Lake County, Hydrologic Unit 09030001, Superior National Forest, at powerplant of Minnesota Power & Light Co., just upstream from Fall Lake, and 1.8 mi (2.9 km) east of Winton.

DRAINAGE AREA.--1,229 mi^2 (3.183 km^2).

PERIOD OF RECORD. -- June 1905 to June 1907, October 1912 to September 1919 (fragmentary), September 1923 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS. -- WDR MN-77-1: Drainage area.

REMARKS .-- Records fair. Daily discharge computed from powerplant records. Flow regulated by powerplant and by Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch, White Iron, South Farm, and Garden Lakes.

COOPERATION. -- Records collected by Minnesota Power & Light Co., under general supervision of Geological Survey, in connection with a Federal Power Commission project.

AVERAGE DISCHARGE (unadjusted).--63 years (water years 1906, 1916-17, 1919, 1924-82), 1,028 ft 3 /s (29.11 m 3 /s), 11.36 in/yr (289 mm/yr); median of yearly mean discharges, 968 ft 3 /s (27.4 m 3 /s) 10.70 in/yr (272 mm/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 16,000 ft3/s (453 m3/s) May 18, 1950; no flow at times.

EXTREMES FOR CURRENT YEAR .-- Maximum daily discharge, 5,630 ft³/s (159 m³/s) May 15; no flow Mar. 31.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES DAY OCT JUL AUG SEP NOV DEC FF.B MAR APR JUIN JAN MAY 878 484 363 792 399 604 760 484 498 . 725 24 1560 628 891 ___ .00 TOTAL MEAN MAX MIN .00 -49 -42 +154 -137 -189 -268 -570 +45 -36 +40 -92 +156 MEAN ± 1.38 CFSM ‡ .21 .16 -69 .54 .53 .31 .24 .16 3.59 1.15 4.14 .80 .97 1.28 .60 .60 .36 .27 .22 .18 .17 1.59

CFSM I

12.60

MAX

414255.00

MEAN

CAL YR 1981 TOTAL

MIN 32 MEAN ‡ WTR YR 1982 TOTAL 399235.00 .82 IN ‡ MEAN MAX MTN -00 CFSM I † Change in contents, equivalent in cubic feet per second, in Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch,

White Iron, Farm, South Farm, and Garden Lakes. ‡ Adjusted for change in reservoir content.

05127500 BASSWOOD RIVER NEAR WINTON, MN

(International gaging station)

LOCATION (REVISED).--Lat 48°04'57", long 91°39'09", in SE\set sec.30, T.65 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on island in Jackfish Bay of Basswood Lake, used to determine discharge at outlet [lat 48°06'21", long 91°38'51", in sec.19, T.65 N., R.10 W., on international boundary 14 mi (23 km) northeast of Winton].

DRAINAGE AREA.--1,740 \min^2 (4,510 km^2), approximately (above outlet of Basswood Lake).

PERIOD OF RECORD.--March to June 1924, September 1925 to March 1928, January 1930 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 955: Drainage area. WSP 1145: 1935, 1937.

GAGE.--Water-stage recorder. Datum of gage is 1,296.80 ft (395.265 m), adjustment of 1928, (levels by Geodetic Survey of Canada). Prior to Oct. 27, 1938, nonrecording gages at several sites in vicinity of gage, at datum 3.0 ft (0.914 m) higher. Oct. 28, 1938, to Sept. 30, 1966, water-stage recorder at datum 3.0 ft (0.914 m) higher.

REMARKS.--Records good. Some regulation by powerplant on Kawishiwi River at Winton, MN, and by many lakes located upstream from station.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--54 years (water years 1926, 1927, 1931-82), 1,389 ft^3/s (39.34 m^3/s), 10.84 1n/yr (275 mm/yr).

EXTREMES FOR PERIOD OF RECORD. — Maximum discharge, 15,600 ft 3 /s (442 m 3 /s) May 24, 1950, gage height 9.94 ft (3.030 m), present datum; minimum, 55 ft 3 /s (1.56 m 3 /s) Nov. 18, 1976, gage height, 1.67 ft (0.509 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,420 ft 3 /s (182 m 3 /s) May 22, gage height, 6.61 ft (2.015 m); minimum, 314 ft 3 /s (8.89 m 3 /s) Oct. 3, gage height, 2.52 ft (0.768 m).

		DISCHARG	E, IN C	JBIC FEET		D, WATER MEAN VALUE		TOBER 198	1 TO SEPTE	MBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	328 323 318 323 328	1160 1180 1190 1190 1170	929 919 914 902 895	644 647 655 653	602 596 586 582 578	593 613 634 649 666	651 636 670 661 638	1630 1860 2020 2240 2560	4980 4810 4610 4410 4220	1620 1570 1620 1620 1600	1820 1740 1660 1620 1570	1020 1000 963 937 903
6	336	1180	874	648	573	677	610	2840	4040	1660	1530	867
7	336	1170	838	649	570	692	589	3110	3850	1670	1510	833
8	336	1140	812	641	570	707	567	3350	3710	1640	1490	803
9	332	1140	788	635	562	725	547	3570	3580	1640	1470	781
10	336	1120	755	629	562	747	533	3880	3500	1630	1420	770
11	341	1110	778	640	562	770	525	4090	3370	1590	1380	760
12	346	1110	774	642	562	787	518	4340	3230	1610	1350	790
13	360	1110	760	638	562	826	515	4620	3110	1640	1310	812
14	385	1100	745	637	562	834	520	4880	3010	1770	1290	811
15	390	1090	729	634	562	837	533	5160	2930	1930	1260	790
16	400	1080	710	631	562	836	549	5450	2820	2050	1250	777
17	430	1060	692	629	562	840	578	5640	2730	2160	1240	795
18	460	1060	682	623	562	858	610	5900	2610	2230	1260	788
19	495	1040	673	627	562	861	638	6160	2490	2300	1270	781
20	538	1020	670	623	562	862	664	6300	2370	2330	1240	773
21	579	1010	678	618	562	851	709	6380	2270	2370	1230	761
22	650	1010	669	615	562	837	763	6400	2170	2380	1270	754
23	732	993	663	628	562	821	834	6380	2080	2360	1270	761
24	823	979	657	628	562	790	931	6300	2030	2320	1260	765
25	880	978	650	628	562	772	1040	6180	2000	2250	1220	774
26 27 28 29 30 31	947 982 1040 1080 1120 1140	994 980 971 959 946	646 648 648 647 646	628 628 628 625 619 611	563 570 581 	756 739 717 691 680 672	1150 1240 1300 1370 1480	6050 5890 5740 5590 5440 5210	1930 1850 1790 1740 1670	2170 2080 2000 1960 1930 1870	1190 1140 1120 1100 1070 1050	781 800 819 830 860
TOTAL MEAN MAX MIN CFSM IN.	17414	32240	23039	19634	15925	23340	22569	145160	89910	59570	41600	24659
	562	1075	743	633	569	753	752	4683	2997	1922	1342	822
	1140	1190	929	655	602	862	1480	6400	4980	2380	1820	1020
	318	946	646	611	562	593	515	1630	1670	1570	1050	754
	•32	.62	•43	•36	•33	•43	.43	2.69	1.72	1.11	•77	•47
	•37	.69	•49	•42	•34	•50	.48	3.10	1.92	1.27	•89	•53
	1981 TOTA 1982 TOTA				IAX 6810 IAX 6400	MIN 297 MIN 318	CFSM CFSM		12.05 11.01			,

05128000 NAMAKAN RIVER AT OUTLET OF LAC LA CROIX, ONTARIO

(International gaging station)

LOCATION (REVISED).--Lat 48°21'14", long 92°13'01", at Campbell's Camp, on Lac La Croix Lake, used to determine discharge at outlet [Lat 48°23'00", long 92°10'40", 2.5 mi (4.0 km) east of Campbell's Camp].

DRAINAGE AREA.--5,170 mi² (13,390 km²).

PERIOD OF RECORD. -- September 1921 to January 1922, April 1922 to current year, in reports of Geological Survey. Monthly discharge only for some periods, published in WSP 1308. August 1921 to current year, in reports of Water Survey of Canada.

GAGE.--Water-stage recorder. Gage readings have been reduced to elevations, United States and Canada Boundary Survey datum. Prior to October 1933, nonrecording gages at various sites on Lac la Croix. October 1933 to Mar. 13, 1963, nonrecording gage at present site and datum.

REMARKS .-- Records excellent.

COOPERATION . -- This station is maintained by Canada under agreement with the United States.

AVERAGE DISCHARGE.--60 years (water years 1923-82), 3,805 ft³/s (107.8 m³/s), 9.99 1n/yr (254 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,200 ft 3 /s (799 m 3 /s) May 31 to June 2, 1950, elevation, 1,193.30 ft (363.718 m); minimum, 535 ft 3 /s (15.2 m 3 /s) at times in February, March and April 1924, elevation, 1,181.50 ft (360.121 m).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 12,400 ft 3 /s (351 m 3 /s) May 27-30, elevation, 1,188.20 ft (362.163 m) May 28; minimum, 1,350 ft 3 /s (38.2 m 3 /s) Oct. 8, elevation, 1,182.55 ft (360.441 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

MEAN VALUES

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1380	1550	2030	1750	1650	1450	1640	3900	12000	5960	7420	3780
2	1380	1570	2020	1760	1640	1450	1650	4100	12000	5810	7280	3730
3	1400	1600	2030	1770	1620	1440	1810	4300	11800	5750	7080	3670
4	1400	1610	2020	1750	1610	1430	1850	4550	11600	5700	6930	3630
5	1390	1610	2020	1750	1600	1430	1850	4820	11300	5660	6740	3560
6	1380	1660	2020	1730	1600	1420	1850	5100	11200	5760	6590	3490
7	1370	1690	1990	1730	1590	1410	1850	5320	10900	5760	6440	3410
8	1370	1670	1970	1720	1580	1410	1850	5620	10700	5830	6250	3330
9	1390	1710	1980	1700	1570	1410	1840	5960	10500	5950	6140	3270
10	1400	1730	1970	1690	1570	1420	1840	6330	10300	6020	6010	3240
11	1410	1770	1960	1700	1560	1440	1840	6640	10200	6090	5880	3190
12	1410	1800	1970	1690	1550	1450	1840	7040	9960	6250	5750	3220
13	1410	1820	1960	1680	1550	1460	1840	7480	9730	6400	5590	3250
14	1410	1850	1940	1680	1550	1480	1840	7950	9570	6690	5460	3210
15	1400	1860	1930	1660	1540	1490	1850	8400	9330	6900	5330	3150
16	1390	1870	1930	1650	1540	1480	1860	8830	9090	7110	5180	3070
17	1410	1880	1910	1650	1530	1480	1880	9220	8870	7250	5050	3070
18	1400	1920	1890	1640	1520	1500	1910	9660	8640	7360	4970	3040
19	1430	1930	1880	1640	1510	1510	1940	10100	8400	7570	4850	2990
20	1440	1930	1870	1630	1490	1520	1970	10600	8170	7710	4740	2950
21	1440	1950	1880	1630	1480	1520	2020	11000	7970	7820	4660	2910
22	1440	1950	1870	1640	1480	1530	2090	11300	7750	7950	4650	2850
23	1440	1950	1870	1690	1480	1540	2200	11700	7450	8030	4560	2820
24	1460	1940	1850	1700	1470	1540	2360	11900	7230	8040	4460	2780
25	1430	1970	1830	1690	1460	1560	2560	12100	7090	8040	4370	2750
26 27 28 29 30 31	1470 1470 1510 1530 1540 1520	2020 1990 2030 2040 2050	1800 1800 1790 1790 1780 1770	1690 1690 1670 1670 1660 1650	1460 1450 1460 	1560 1570 1580 1580 1610 1610	2810 3060 3290 3510 3700	12200 12400 12400 12400 12400 12200	6860 6640 6480 6310 6120	8010 7950 7870 7760 7660 7560	4280 4120 4070 4010 3910 3860	2700 2670 2710 2650 2600
TOTAL MEAN MAX MIN CFSM IN.	44220 1426 1540 1370 .28	54920 1831 2050 1550 •35 •40	59320 1914 2030 1770 •37 •43	52350 1689 1770 1630 •33 •38	43110 1540 1650 1450 .30	46280 1493 1610 1410 •29 •33	64400 2147 3700 1640 .42	267920 8643 12400 3900 1.67 1.93	274160 9139 12000 6120 1.77 1.97	214220 6910 8040 5660 1.34 1.54	166630 5375 7420 3860 1.04 1.20	93690 3123 3780 2600 .60
CAL YR WTR YR			30 MEAN 20 MEAN	4010 3784	MAX 130 MAX 124		1330 1370	CFSM .78 CFSM .73	IN 10.53 IN 9.94			

05128200 VERMILION LAKE NEAR SOUDAN, MN

- LOCATION.--Lat 47°49'52", long 92°16'20", in SW\sE\sec.20, T.62 N., R.15 W., St. Louis County, Hydrologic Unit 09030002, on south shore of Vermilion Lake, 2 mi (3.2 km) northwest of Soudan.
- PERIOD OF RECORD. --October 1913 to July 1915, July 1941 to November 1942, June 1946 to current year (fragmentary during 1947).
- GAGE.--Water-stage recorder. Datum of gage is 1,355.10 ft (413.034 m) National Geodetic Vertical Datum of 1929. October 1913 to July 1915, nonrecording gage at Tower, 2 mi (3.2 km) southwest of present gage, at datum about 1,354.60 ft (412.882 m). July 1941 to November 1942, and June 1946 to June 1951, nonrecording gage approximately 13 mi (20.9 km) northwest at Vermilion Dam near Tower, at same datum. All gage readings have been reduced to elevations NGVD.
- EXTREMES FOR PERIOD OF RECORD.--Maximum elevation observed, 1,359.52 ft (414.382 m) May 16, 1950; minimum observed, 1,356.02 ft (413.315 m) Jan. 29, 1942; minimum 1,355.96 ft (413.297 m) Dec. 14, 1976, result of wind action.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Elevation on June 6, 1913, was 1,359.94 ft (414.510 m), determined from reference point set by local observers.
- EXTREMES FOR CURRENT YEAR.--Maximum elevation, not determined; maximum daily, 1,358.60 ft (414.101 m) May 20-22; minimum, 1,356.87 ft (413.574 m) Oct. 3; minimum daily, 1,356.90 ft (413.583 m) Oct. 3.

MONTHEND ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Oct. 31 1357.38	Feb. 24 1357.07	June 30 1357.77
Nov. 30 1357.23	Mar. 31 1357.05	July 31 1357.59
Dec. 31 1357.15	Apr. 30 1358.05	Aug. 31 1357.25
Jan. 31 1357.15	May 31 1358.41	Sept.30 1357.30

NOTE.--Elevations other than those shown above are available.

05129115 VERMILION RIVER NEAR CRANE LAKE, MN

LOCATION.--Lat 48°15'53", long 92°33'57", in NERNER sec. 30, T.67 N., R.17 W., St. Louis County, Hydrologic Unit 09030002, in Superior National Forest, on left bank 350 ft (107 m) downstream from bridge on Forest Route 491, 3.5 mi (5.6 km) upstream from mouth, and 3.5 mi (5.6 km) west of village of Crane Lake.

PERIOD OF RECORD .-- August 1979 to current year.

GAGE.--Water-stage recorder. Altitude of gage is 1,180 ft (360 m), from topographic map.

REMARKS .-- Records fair.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 3,100 ft 3 /s (87.8 m 3 /s) Apr. 25, 1982, gage height, 13.04 ft (3.975 m); minimum, 38 ft 3 /s (1.08 m 3 /s) Aug. 13, 14, 1980, gage height, 3.68 ft (1.122 m).

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of April 1979 reached a stage of 15.15 ft (4.618 m), from high-water mark, discharge, about 4,600 ft³/s (130 m³/s).

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 3,100 ft 3 /s (87.8 m 3 /s) Apr. 25, gage height, 13.04 ft (3.975 m); minimum, 127 ft 3 /s (3.60 m 3 /s) Oct. 1, gage height, 4.67 ft (1.423 m).

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 519 596 288 2630 339 879 867 28**9** 24 20 28 2780 220 512 284 689 175 ___ ___ TOTAL 2830 MEAN 656 MAX 482 MIN

CAL YR 1981 TOTAL 235488 MEAN 645 MAX 2370 MIN 106 WTR YR 1982 TOTAL 231586 MEAN 634 MAX 3090 MIN 142

NOTE; No gage-height record Jan. 17 to Feb. 28.

05129400 RAINY LAKE NEAR FORT FRANCES, ONTARIO (International gaging station)

- LOCATION.--Lat 48°38'30", long 93°20'00", at Five Mile dock, approximately 5 mi (8 km) northeast of town of Fort
- PERIOD OF RECORD.--January 1910 to September 1917 and October 1934 to current year, in reports of Geological Survey. August 1911 to September 1979, in reports of Water Survey of Canada. Prior to October 1949, published as "at Ranier, Minn.", and as "at Fort Frances, Ontario" October 1949 to September 1964.
- GAGE.--Water-stage recorder. Datum of gage is at National Geodetic Vertical Datum of 1929 (United States and Canadian Boundary Survey). January 1910 to December 1949, nonrecording gage 3 mi (5 km) northeast at Ranier, Minn., at same datum. January 1950 to October 1964, water-stage recorder on Government dock at Pither's Point at Fort Frances and supplementary gage in town pumping station, 0.5 mi (0.8 km) south, used during winter months, at same datum.
- COOPERATION. -- This station is one of the international gaging stations maintained by Canada under agreement with the United States.
- EXTREMES FOR PERIOD OF RECORD.—Maximum elevation observed, 1,112.97 ft (339.233 m) July 5, 1950; minimum observed, 1,101.26 ft (335.664 m) Apr. 17, 1923, Apr. 2, 1930.
- EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,108.31 ft (337.813 m) July 5, maximum daily elevation, 1,108.16 ft (337.767 m) July 10; minimum, 1,104.44 ft (336.633 m) Mar. 31; minimum daily, 1,104.56 ft (336.670 m) Apr. 1.

MONTHEND ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

Oct. 31 1107.24	Feb. 28 1105.55	June 30 1107.75
Nov. 30 1107.21	Mar. 31 1104.58	July 31 1107.98
Dec. 31 1106.65	Apr. 30 1105.74	Aug. 31 1107.50
Jan. 31 1106.02	May 31 1108.05	Sept.30 1107.44

NOTE. -- Elevations other than those shown are available.

05130500 STURGEON RIVER NEAR CHISHOLM, MN

LOCATION.--Lat 47°40'25", long 92°54'00", in NEANWA sec.20, T.60 N., R.20 W., St. Louis County, Hydrologic Unit 09030005, on left bank 1,000 ft (305 m) upstream from highway bridge, 0.6 mi (1.0 km) downstream from East Branch Sturgeon River, and 11.5 mi (18.5 km) north of Chisholm.

DRAINAGE AREA.--187 mi² (484 km²).

PERIOD OF RECORD. -- August 1942 to current year.

REVISED RECORDS.--WSP 1438: 1946.

GAGE.--Water-stage recorder. Datum of gage is 1,305.7 ft (397.977 m) National Geodetic Vertical Datum of 1929. Prior to Aug. 24, 1944, nonrecording gage at site 1,000 ft (305 m) downstream at different datum. Aug. 25, 1944, to Sept. 30, 1975, at present site at datum 1.00 ft (0.305 m) higher.

REMARKS .-- Records good except those for winter period, which are fair.

AVERAGE DISCHARGE.--40 years, 124 ft 3 /s (3.512 m 3 /s), 9.00 in/yr (229 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,630 ft³/s (103 m³/s) May 7, 1950, gage height, 7.41 ft (2.259 m), present datum, from rating curve extended above 1,600 ft³/s (45.3 m³/s) on basis of slope-area measurement of peak flow; minimum daily, 3.8 ft³/s (0.11 m³/s) Jan. 31 to Feb. 3, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharge above base of 500 ft 3 /s (14.2 m 3 /s) and maximum (*):

		Disch	arge	Gage	height
Date	Time	Disch (ft ³ /s)	(\bar{m}^3/s)	(ft)	(m)
Apr. 18 May 16	2130 1430	*1220 743	34.6 21.0	*a5.34 4.32	1.628 1.317

Minimum daily discharge, 19 ft 3 /s (0.54 m 3 /s) Feb. 21 to Mar. 29; minimum gage height, 1.56 ft (0.475 m) Mar. 17, 19-25.

a Ice jam.

		DISCHARG	E, IN CU	BIC FEET	PER SECON	D, WATER EAN VALU	YEAR OCTO	BER 1981	TO SEPTEM	BER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	59 75 76 106 127	138 135 129 125 126	78 77 76 76 71	33 32 31 31 30	20 20 20 20 20	19 19 19 19	46 52 60 64 66	382 348 321 327 426	225 210 194 180 168	67 61 62 82 13 4	106 111 112 91 84	60 91 88 78 67
6 7 8 9	155 165 158 144 139	123 120 118 116 114	74 72 69 61 63	29 29 28 27 27	20 20 20 20 20	19 19 19 19	67 68 70 70 70	468 468 419 367 357	155 148 141 142 174	200 256 271 266 249	78 82 83 78 71	60 56 53 52 50
11 12 13 14 15	134 129 134 144 143	112 110 108 106 104	64 64 66 65 59	26 26 25 25 24	20 20 20 20 20	19 19 19 19	70 70 75 100 220	391 430 479 551 688	178 177 163 152 170	229 217 242 267 260	62 56 95 106 107	51 74 128 137 136
16 17 18 19 20	143 170 218 239 261	102 100 98 97 95	54 52 51 49 47	24 24 23 23 23	20 20 20 20 20	19 19 19 19	450 780 1120 1160 1130	730 699 699 716 688	171 156 142 137 130	293 255 222 1 91 166	96 82 76 79 73	123 127 129 124 120
21 22 23 24 25	247 231 212 191 174	93 92 90 88 87	46 44 43 42 40	22 22 22 22 21	19 19 19 19	19 19 19 19	995 893 821 787 76 7	618 530 461 394 355	128 120 109 97 86	175 151 136 138 135	70 95 105 99 95	111 102 99 96 94
26 27 28 29 30 31	162 156 149 146 144 142	85 84 82 81 80	39 38 37 36 35 34	21 21 21 21 21 21	19 19 19 	19 19 19 19 25 32	724 650 568 486 432	325 292 262 247 242 235	78 71 65 70 70	120 112 105 100 104 107	84 75 68 63 58 57	90 86 84 90 89
TOTAL MEAN MAX MIN CFSM IN.	4873 157 261 59 .84	3138 105 138 80 •56 •62	1722 55.5 78 34 .30	775 25.0 33 21 .13 .15	552 19.7 20 19 .11	608 19.6 32 19 .11	12931 431 1160 46 2.31 2.57	13915 449 730 235 2.40 2.77	4207 140 225 65 •75 •84	5373 173 293 61 •93 1•07	2597 83.8 112 56 .45 .52	2745 91.5 137 50 .49

CAL YR 1981 TOTAL 42644 MEAN 117 MAX 844 MIN 22 CFSM .63 IN 8.48 WTR YR 1982 TOTAL 53436 MEAN 146 MAX 1160 MIN 19 CFSM .78 IN 10.63

05131500 LITTLE FORK RIVER AT LITTLE FORK, MN

LOCATION.--Lat 48°23'45", long 93°32'57", in NE\SE\ sec.9, T.68 N., R.25 W., Koochiching County, Hydrologic Unit 09030005, on right bank at town of Littlefork, 0.9 mi (1.4 km) upstream from bridge on State Highway 217, 2.8 mi (4.5 km) upstream from Beaver Creek, and 19 mi (31 km) upstream from mouth.

DRAINAGE AREA.--1,730 mi² (4,481 km²), approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June to November 1909, April to November 1910, April 1911 to June 1917, September 1917, October 1917 to March 1919 (gage heights only), June 1928 to current year.

REVISED RECORDS.--WSP 955: Drainage area. WSP 1508: 1913, 1916, 1928-32, 1934. WRD MN-74: 1963.

GAGE.--Water-stage recorder. Datum of gage is 1,083.59 ft (330.278 m) National Geodetic Vertical Datum of 1929.

June 23, 1909, to Mar. 4, 1917, nonrecording gage and July 21, 1937, to Oct. 23, 1979, water-stage recorder at site 1.2 mi (1.9 km) downstream at datum 10.53 ft (3.210 m) lower; Mar. 5 to Sept. 30, 1917, and June 22, 1928, to July 20, 1937, nonrecording gage at site 1.18 mi (1.9 km) downstream at datum 10.53 ft (3.210 m) lower.

REMARKS .-- Records good except those for winter period, which are fair.

AVERAGE DISCHARGE.--59 years (water years 1912-16, 1929-82), 1,051 ft^3/s (29.76 m^3/s), 8.25 in/yr (210 mm/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 25,000 ft³/s (708 m³/s) Apr. 18, 1916, May 11, 1950, gage height, 37.00 ft (11.278 m); minimum observed, 21 ft³/s (0.59 m³/s) Aug. 26, 27, 1936.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, about 12,800 ft³/s (362 m³/s) Apr. 21, gage height, 18.09 ft (5.514m)(back water from ice); minimum daily, 147 ft³/s (4.16 m³/s) Jan. 29 to Mar. 28; minimum gage height, 2.53 ft (0.711 m) Mar. 11, 12.

		DISCHARGE	, IN CU	BIC FEET	PER SECOND	, WATER	YEAR OCTO	OBER 1981	TO SEPTE	MBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	394 658 718 792 1190	1210 1130 1050 978 918	387 415 393 365 362	210 210 205 200 200	147 147 147 147 147	147 147 147 147 147	180 200 250 300 380	4490 4040 3610 3370 4180	1800 1690 1560 1460 1350	585 558 536 495 500	390 373 369 361 345	288 270 256 252 277
6 7 8 9 10	1920 2290 2230 2030 1860	874 818 780 726 688	323 309 319 307 269	200 195 195 190 190	147 147 147 147 147	147 147 147 147 147	425 595 665 645 600	4960 4840 4460 3960 3560	1240 1180 1140 1080 1480	568 634 860 1050 1140	349 349 325 294 302	313 313 302 288 266
11 12 13 14 15	1770 1650 1580 1540 1540	664 640 624 607 590	250 287 332 337 328	185 185 180 180 175	147 147 147 147 147	147 147 147 147 147	555 530 525 550 925	4020 4510 4400 4740 6220	2200 2190 2060 1860 1650	1140 1120 1060 1230 1210	329 309 294 298 288	235 232 246 246 274
16 17 18 19 20	1570 1520 1790 2680 2880	585 568 541 513 497	318 304 290 285 275	175 170 170 165 165	147 147 147 147 147	147 147 147 147 147	2960 6490 8380 9860 11300	8270 8780 8560 9770 11000	1460 1360 1350 1270 1170	1200 1240 1180 1040 895	277 369 394 369 329	455 624 646 634 652
21 22 23 24 25	2730 2520 2280 2030 1810	381 327 357 426 495	265 255 250 245 240	160 160 155 155 155	147 147 147 147 147	147 147 147 147 147	12500 11500 11000 10100 9870	10000 7850 6170 5020 4210	1080 994 962 918 839	786 718 652 640 602	309 313 317 321 398	664 652 580 520
26 27 28 29 30 31	1570 1440 1370 1320 1300 1270	485 440 426 411 418	235 230 225 220 215 210	150 150 150 147 147 147	147 147 147 	147 147 147 150 158 170	9230 7830 6660 5750 5030	3510 3010 2630 2340 2130 1940	766 712 646 612 602	539 505 479 454 432 408	421 398 398 377 333 309	500 475 470 460 440
TOTAL MEAN MAX MIN CFSM IN.	52242 1685 2880 394 •97 1•12	19167 639 1210 327 •37 •41	9045 292 415 210 .17 .19	5421 175 210 147 .10	4116 147 147 147 .09	4594 148 170 147 .09	135785 4526 12500 180 2.62 2.92	160550 5179 11000 1940 2.99 3.45	38681 1289 2200 602 .75 .83	24456 789 1240 408 •46 •53	10607 342 421 277 .20 .23	12454 415 664 232 •24 •27
	1981 TOTA 1982 TOTA		ME AN ME AN		AX 6090 AX 12500	MIN 10 MIN 14		.60 IN .76 IN	8.16 10.26			

05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

1

PERIOD OF RECORD.--Water years 1967, 1969, 1971, 1973 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1980 to September 1981.
WATER TEMPERATURES: October 1980 to September 1981.

INSTRUMENTATION. -- Water-quality minimonitor since October 1980.

REMARKS.--Letter K indicates non-ideal colony count.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum, 299 micromhos Feb. 21, 1981; minimum, 99 micromhos Apr. 30, May 1, 1981. WATER TEMPERATURES: Maximum, 26.0°C July 7, 8, 12-14, 1981; minimum, 0.0°C several days during winter period.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 255 micromhos Mar. 29, 30; minimum, 82 micromhos Apr. 19.
WATER TEMPERATURES: Maximum, 25.5°C July 6, Aug. 5, 7; minimum, 0.0°C several days during winter period.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
OCT Ol DEC	1600		435	190	172	8.3	7.6	5.0	7.5	735
14	1630		337	160	150	7.8	7.6	-9.0	.0	734
FEB 02 MAY	0830	145		230	553	7.3	7.5	-20.0	.0	737
20	0825		11100	114	104	7.9	7.4	11.0	13.5	733
JUL 21	1130		780	130	124	7.7	7.6	20.0	22.0	731
SEP 13	1400		238	180	192	7.7	7.9	14.0	17.0	732
DATE	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS (MG/L AS CACO3) (00900)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3) (95902)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
OCT 01 DEC	8.5	11.1	96	83	250	92	12	24	7.9	1.5
14	5.5	13.6	97	К3	44	81	11	21	7.0	3.2
FEB 02 MAY	7.4	10.2	72	К2	K11	109	9.0	28	9.6	4.5
20 JUL	90	8.3	83	190	K1500	59	•00	17	4.1	2.0
21 SEP	7.2	7.7	92	K10	30	64	7.0	17	5.3	2.5
13	12	8.7	94	K15	150	88	5.0	23	7.4	3.8
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)
OCT 01	.1	1.5	80	7.0	2.0	.1	6.8;	142	100	167
DEC 14	.2	1.2	70	8.8	2.3	<.1	7.4	126	93	115
FEB 02	.2	1.9	100	11	2.9	<.1	11	173	130	67.7
MAY 20	.1	1.0	63	7.0	2.0	<.1	5.0	112	76	3360
JUL 21	.1	•7	57	6.0	2.1	.1	7.0	122	75	257
SEP 13	.2	1.1	83	8.0	2.4	.2	8.2	144	104	92.5

05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

ARSENIC DIS- RECOV- DI		DAT OCT 01 DEC 14. FEB 02. MAY 20 JUL 21 SEP 13.		GE NO2+ DI SOL (MG AS (006	RO- NO3 S- VED /L	NIT GMMO DI SOL (MG AS (006	RO- N, NIA S- VED /L	NIT GEN, MONII ORGA TOT (MG AS (006	RO- AM- A + NIC AL /L N)	PHOPHOR TOT (MG AS (006	S- RUS, AL H/L P)	SOL (MG AS (006	S- US, S- VED /L P)	PHOPHOR ORT DISSOLV (MG/AS P(006)	S- US, HO, ED L	SED MEN' SUS- PEN' (MG,	I- T, DED /L)	SED MENN DI CHAR SU PEN (T/D (801	T, S- GE, S- DED AY) 55)	SIE	SP. VE AM. NER AN MM	
OLT OLS COPPER TOTAL COPPER, TOTAL IRON, TOTAL LEAD, TOTAL LEAD, TOTAL LEAD, TOTAL COPPER TOTAL LEAD, TOTAL SOLVED ERABLE SOLVED LEAD LEAD LEAD LEAD LEAD LEAD LEAD LE	DAT	ΓE	т	IME	TO (U AS	TAL G/L AS)	SO (U AS	IS- LVED G/L AS)	TO RE ER (U AS	TAL COV- ABLE G/L BA)	DI SOL (U AS	S- VED G/L BA)	TO RE ER (U AS	TAL COV- ABLE G/L CD)	SO (U AS	IS- LVED G/L CD)	MI TO' RE ER (U AS	UM, FAL COV- ABLE G/L CR)	MI DI SOI (UC AS	UM, S- LVED G/L CR)	TOT REC ER (UC AS	TAL COV- ABLE G/L CO)
02 0830 5 2 100 32 <1 <1 <20 10 12 MAY 20 0825 1 1 1 100 42 1 1 1 20 10 2 SEP 13 1400 3 3 3 100 29 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	01.		1	600		3		3		<50		2		1		1		30		10		2
20 0825 1 1 100 42 1 1 20 10 2 SEF 13 1400 3 3 3 100 29 1	02.	•••	0	830		5		2		100		32		<1		<1		20		10		1
13 1400 3 3 100 29 1 <1 <10 <10 3 3 3 100 29 1 <1 <10 <10 <3 3 3 3 3 3 3 3 3	20.		0	825		1		1		100		42		1		1		20		10		2
COPER		• • •	1	400		3		3		100		29		1		<1		<10		<10		3
Ol <1 6 <1 840 230 2 1 60 32 <.1 FEB O2 <1 9 3 1200 690 3 1 40 28 .2 MAY 20 2 13 6 6100 310 6 3 180 21 .6 SEP 13 2 4 2 970 330 4 4 60 23 .6 MERCURY TOTAL DIS- RECOV- DIS- NIUM, DIS- RECOV- DIS- SOLVED (UG/L (FA D	PE.	DI SOL (U	S- VED G/L CO)	TO RE ER (U	TAL COV- ABLE G/L CU)	DI SO (U AS	S- LVED G/L CU)	TO RE ER (U AS	TAL COV- ABLE G/L FE)	SO (U AS	IS- LVED G/L FE)	TO RE ER (U AS	TAL COV- ABLE G/L PB)	D SO (U AS	IS- LVED G/L PB)	NE TO RE ER (U	SE, TAL COV- ABLE G/L MN)	NE D SO (U AS	SE, IS- LVED G/L MN)	TO: REC ER (UC AS	TAL COV- ABLE G/L HG)
NICKEL, NICKEL, NICKEL, NICKEL, NIUM, NICKEL, NIUM, NI				< 1		6		<1		840		230		2		1		60		32		<.1
MAY 20 2 13 6 6100 310 6 3 180 21 .6 SEP 13 2 4 2 970 330 4 4 60 23 .6 MERCURY TOTAL NICKEL, SELE- NIUM, TOTAL SILVER, TOTAL ZINC, DIS- RECOV- DIS- NIUM, DIS- RECOV-	FEB																					
NICKEL, NICKEL, SELE- SILVER, TOTAL ZINC, NICKEL, SELE- NIUM, TOTAL SILVER, TOTAL ZINC, DIS- RECOV- DIS- NIUM, DIS- RECOV- DIS- RECO	MAY																					
NICKEL, SELE- SILVER, ZINC, MERCURY TOTAL NICKEL, SELE- NIUM, TOTAL SILVER, TOTAL ZINC, DIS- RECOV- DIS- RECOV- DIS- RECOV- DIS- RECOV- DIS- RECOV- DIS- RECOV- DIS- SOLVED ERABLE ERA	SEP																					
01 <.1 7 1 <1 <1 2 <1 20 4 FEB 02 <.1 1 1 <1 <1 <1 <1 70 70 MAY 20 .1 14 4 <1 <1 <1 <1 <1 50 11 SEP	-3.	DAT	ſΈ	MERO DI SOL (UG AS	S- VED /L HG)	NICK TOT REC ERA (UG	AL OV- BLE /L NI)	NICK DIS SOL (UG AS	VED /L NI)	SEI NIU TOT (UG AS	JM, TAL B/L SE)	SEL NIU DI SOL (UG AS	M, S- VED /L SE)	SILV TOT REC ERA (UG	AL OV- BLE /L AG)	SILV DI SOL (UG AS	S- VED /L AG)	ZIN TOT REC ERA (UG	AĹ OV- BLE /L ZN)	ZIN DI SOL (UG AS	S- VED /L ZN)	••
02 <.1 1 1 <1 <1 <1 <1 70 70 MAY 201 14 4 <1 <1 <1 <1 50 11 SEP		01.	• • •		<.1		7		1		<1		<1		2		<1		20		4	
201 14 4 <1 <1 <1 <1 50 11 SEP		02.			<.1		1		1		<1		<1		<1		<1		70		70	
		20			.1		14		4		<1		<1		<1		<1		50		11	
			• • •		•3		5		1		<1		<1		<1		<1		50		<4	

LAKE OF THE WOODS BASIN
05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE			NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	198 195 171 180 157	183 173 157 151 149	189 181 162 165 151	165 165 161 163 163	164 164 159 160 162	164 165 160 161 162	161 157 157 159 159	157 154 155 156 158	158 155 156 158 158	194 197 199 200 201	192 193 196 198 200	193 195 198 199 201
6 7 8 9 10	184 183 177 167 164	152 177 167 163 162	164 181 172 164 163	163 162 163 157 157	161 161 161 155 155	162 162 162 156 156	160 161 156 159 161	158 159 155 156 158	159 160 156 157 160	203 206 206 203 204	201 201 201 202 202	202 202 202 203 203
11 12 13 14 15	161 165 173 174 173	159 161 165 172 171	160 163 169 173 172	158 160 162 158 160	156 158 159 156 157	157 159 160 157 159	163 164 165 165 166	160 162 164 164 164	162 163 164 164 165	205 206 207 208 210	202 204 205 206 207	204 205 206 207 208
16 17 18 19 20	174 171 173 174 177	171 168 171 171 173	172 169 172 172 176	161 162 162 162 156	160 160 161 161 155	161 161 161 161 156	168 172 174 177 179	165 168 171 174 176	166 170 173 176 177	211 213 215 216 217	208 210 212 214 215	209 211 214 215 216
21 22 23 24 25	174 170 161 160 160	169 166 160 158 158	171 168 161 159 159	158 161 160 162 161	154 158 158 160 160	156 159 159 160 160	180 181 183 186 185	178 179 180 182 184	179 180 181 184 185	216 217 218 219 220	216 217	216 216 217 218 219
26 27 28 29 30 31	159 161 164 160 163 164	157 158 161 158 160 163	158 159 162 159 161 164	156 156 158 159 159	155 155 156 156	155 155 156 157 158	186 188 188 189 190 192	184 186 187 187 189 190	185 187 187 188 190 191	220 222 222 223 222 223	219 220 221 221 221 221	220 221 221 222 222 222
MONTH	198	149	167	165	154	159	192	154	171	223	192	210
	MAY	MIN	MOAN	MAR	WTN	MT5 4 M	M A V	MTN	I ASTRONALI	MAY	N. T. V.	MERAN
DAY	MAX	MIN FEBRUAR	MEAN Y	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN May	MEAN
		FEBRUAR 222	Y	MAX 242 243 243 244 245	MIN MARCH 241 241 241 242 243		MAX 201 189 188 185 187	APRIL		MAX	MIN MAY	MEAN
DAY 1 2 3 4	223 223 224	FEBRUAR 222 222 222 223	222 223 223 224 225	242 243 243 244	MARCH 241 241 241 242 243	24 2 24 2 24 2 24 3	201 189 188 185	APRIL 198 187 185 181	200 188 186 183	MAX		MEAN
DAY 1 2 3 4 5 6 7 8 9 9	223 223 224 225 226 227 228 228 230	FEBRUAR 222 222 222 223 224 225 226 227 228	222 223 223 224 225	242 243 243 244 245	MARCH 241 241 241 242 243	244 244 244 242 242 242 242 242 244 244	201 189 188 185 187 185 181 184 178	APRIL 198 187 185 181 185 181 179 177	200 188 186 183 186 183 180 180	MAX		MEAN
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14	223 223 224 225 226 227 228 230 232 234 235 236 238	FEBRUAR 222 222 222 223 224 225 226 227 228 229 232 232 234	222 223 223 224 225 226 227 228 229 231 233 234 235	243 2443 2445 2445 2445 2445 2445 2445 2	MARCH 241 241 242 243 243 243 2445 245 247 247	242 242 243 244 244 244 244 246 678 248	201 189 188 185 187 181 184 178 178 174 177 175	198 187 185 181 185 181 179 177 173 174 171 174 170 167	200 188 186 183 186 180 176 176 177 1775 1773	MAX		MEAN
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	223 223 224 225 226 227 228 238 230 232 235 236 238 239 240 241 241	FEBRUAR 222 222 223 224 225 226 227 228 229 232 234 236 237 238 238 239 239	222 223 223 224 225 226 227 228 229 231 233 234 235 237 238 239 240 240	243345 2443245 244557 244557 244224 24501 24501	MARCH 241 241 242 243 243 243 2445 245 247 247 248 248 249	22234 43446 67888 8899	201 189 188 185 187 185 181 184 178 177 177 179 167 154 107 86	198 187 185 181 185 181 179 177 173 174 171 174 170 167 148 129 102 87 82	200 188 186 183 186 180 180 176 175 1775 1774 160 138 120 96	MAX		MEAN
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	223 223 224 225 226 227 228 228 230 232 235 236 238 239 241 241 241 241 241 241 241 242	FEBRUAR 222 222 223 224 225 226 227 228 229 232 234 236 237 238 239 240 239 239 240	222 223 224 225 226 227 228 229 231 233 234 235 237 238 239 240 240 240 240 240 241	233345 2445 2445 2445 2445 2445 2445 244	MARCH 241 241 241 242 243 243 2443 2445 245 2477 248 2449 249 248 2499 248 2499	22234 43446 67888 88990 9901 22234 43446 67888 2222 22222 22444 24445 4455 2255	201 189 188 185 187 185 181 184 178 177 175 179 167 154 129 107 86 92 100 98 106	198 187 185 181 185 181 177 177 173 174 171 174 170 167 148 129 102 87 82 83 90 87 94 88	200 1888 186 183 186 183 180 176 177 177 177 177 177 178 120 96 84 87 97 995	MAX		MEAN

117

05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

	D1130	01110 00		(MIONOPHIOE	OH AL Z	ט אינוע ע.), WATER YEAR	. OOLODE		, philippin	-,	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1							163 166	161 161	162 163	180 178	174 173	176 175
1 2 3 4 5							168	165	167	179 178	171	175
4 5							171 173	168 170	169 171	178 175	173 173	175 174
							174	172	173	174	172	173
6 7 8							175	173	174	174	172	173
8 9							177 180	175 176	176 178	176 178	173 175	174 176
9 10							182	178	180	181	177	179
11							184	181	182	186	181	183 186
12 13							184 185	182 183	183 184	187 187	184 177	186 182
14 15							185 190	183 183	184 186	181 180	178 178	179 179
16 17							192 190	187 188	189 189	178 171	171 159	174 164
18 19							189 191	186 187	188 189	164 167	159 164	162 165
20							189	183	186	166	154	160
21				255	124	170	191	182	187	154	145	149 142
22 23				135 136	131 134	133 135	189 188	182 182	185 185	145 143	139 139	142 141
23 24				140	135	138	190	184	187 188	144 141	140	143
25				144	139	141	190	185			139	140
26 27				149 152	144 149	146 150	185 172	173 165	178 168	139 138	138 137	138 137
27 28				155	152	153	169	167	168	139	136	137
29 30 31				158 161	154 157	156 159	172 176	169 172	170 174	143 143	139 141	141 142
31				163	160	161	178	175	176			
MONTH							192	161	179	187	136	163
				/	>			001 70		1000		
				-	-		EAR OCTOBER 1					
DAY	MAX	MIN	TEMPERATUR MEAN	E, WATER (DEG. C), MIN	WATER Y	EAR OCTOBER 1	.981 TO 8	SEPTEMBER MEAN	1982 MAX	MIN	MEAN
DAY	MAX		MEAN	-	-	MEAN			MEAN		MIN Januaf	
1	8.0	MIN OCTOBE 6.0	MEAN ER 7.0	MAX	MIN NOVEMBE	MEAN ER 4.0	MAX	MIN DECEMBE	MEAN R	MAX	JANUAF	.0
1 2	8.0 7.5 7.0	MIN OCTOBE	MEAN ER	MAX	MIN NOVEMBE	MEAN ER 4.0 4.0 4.5	MAX	MIN DECEMBE	MEAN R	MAX	JANUAF	X Y
1 2 3 4	8.0 7.5 7.0 7.0	MIN OCTOBE 6.0 6.0 6.0 6.5	MEAN 7.0 6.5 6.5 7.0	MAX 4.5 4.5 4.5 5.0	MIN NOVEMBE 4.0 4.0 4.0 4.0	MEAN ER 4.0 4.0 4.5 4.5	.0 .0 .0	MIN DECEMBE	MEAN R .0 .0 .0 .0	MAX .0 .0 .0	JANUAF .0 .0 .0 .0	.0 .0 .0
1 2 3 4 5	8.0 7.5 7.0 7.0 7.5	MIN OCTOBE 6.0 6.0 6.0 6.5 7.0	MEAN 7.0 6.5 6.5 7.0 7.5	MAX 4.5 4.5 4.5 5.0	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0	MEAN 4.0 4.0 4.5 4.5	.0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0	.0 .0 .0	JANUAF .0 .0 .0 .0	.0 .0 .0 .0
1 2 3 4 5	8.0 7.5 7.0 7.0 7.5 8.5 8.0	MIN OCTOBE 6.0 6.0 6.5 7.0	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0	MAX 4.5 4.5 5.0 5.0 4.5	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0	MEAN ER 4.0 4.0 4.5 4.5 4.5 4.5	.0 .0 .0 .0 .0	MIN DECEMBE	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0	.0 .0 .0 .0 .0
1 2 3 4 5 6 7 8	8.0 7.5 7.0 7.0 7.5 8.5 8.0	MIN OCTOBE 6.0 6.0 6.5 7.0 7.5 7.5	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5	MAX 4.5 4.5 5.0 5.0 4.5 4.7 4.5	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 4.0	MEAN 4.0 4.5 4.5 4.5 4.5 3.0	MAX .0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0
1 2 3 4 5	8.0 7.5 7.0 7.0 7.5 8.5 8.0	MIN OCTOBE 6.0 6.0 6.5 7.0	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0	MAX 4.5 4.5 5.0 5.0 4.5	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0	MEAN ER 4.0 4.0 4.5 4.5 4.5 4.5	.0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0	.0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10	8.0 7.5 7.0 7.0 7.5 8.5 8.0 7.5 7.5 8.0	MIN OCTOBE 6.0 6.0 6.5 7.0 7.5 7.5 7.5 7.5	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 8.0	MAX 4.5 4.5 5.0 5.0 4.5 4.5 5.0 1.5	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.5 1.5 1.0	MEAN ER 4.0 4.0 4.5 4.5 4.5 4.5 4.1 1.5	.0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10	8.0 7.5 7.0 7.5 8.5 8.0 7.5 8.0 8.5 8.5	MIN OCTOBE 6.0 6.0 6.5 7.0 7.5 7.5 7.5 7.5 7.5	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 8.0	MAX 4.5 4.5 5.0 5.0 4.5 4.5 5.0 5.0 1.5	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 4.0 1.0	MEAN ER 4.0 4.0 4.5 4.5 4.5 4.5 4.5 1.5 1.5	.0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	8.0 7.5 7.0 7.5 8.5 8.0 7.5 8.0 8.5 8.5	MIN OCTOBE 6.0 6.0 6.0 7.5 7.5 7.5 7.5 8.5	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 8.0 8.5 9.0	MAX 4.55 4.55 5.00 4.05 2.05 1.55 3.00	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.5	MEAN 4.0 4.0 4.5 4.5 4.5 4.5 1.5 2.0 1.5 1.5 2.0 3.0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8.0 7.5 7.0 7.5 8.5 8.5 7.5 8.0 8.5 9.5 9.5	MIN OCTOBE 6.0 6.0 6.5 7.0 7.5 7.5 7.5 7.5 7.5 8.5 9.0 8.5	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 8.5 9.0 9.0	MAX 4.55 4.55 5.00 4.05 4.05 2.05 1.55 3.55	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 3.0	MEAN 4.0 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.0 1.5 1.5 2.0 3.0 3.0	.0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8.0 7.5 7.0 7.5 8.0 7.5 8.0 7.5 8.0 9.0 9.0 9.0	MIN OCTOBE 6.0 6.0 6.0 6.0 7.5 7.5 7.5 7.5 7.5 8.5 9.5 8.5 9.5	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 8.0 9.0	MAX 4.55 4.55 5.00 4.05 4.05 2.05 1.55 3.55	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 3.0	MEAN 4.0 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.0 1.5 1.5 2.0 3.0 3.0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8.05 7.50 7.50 7.55 8.05 7.55 8.05 7.55 8.05 9.00 9.00	MIN OCTOBE 6.0 6.0 6.0 6.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 8.5 9.5 8.5 9.5 9.5	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 9.0 9.0 9.0 9.0	MAX 4.55 4.55 5.00 4.05 4.05 2.05 1.55 3.55	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 3.0	MEAN ER 4.0 4.5 4.5 4.5 4.5 4.5 2.0 3.5 2.0 3.5 3.5 3.0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8.0 7.5 7.0 7.5 8.0 7.5 8.0 7.5 8.0 9.0 9.0 9.0	MIN OCTOBE 6.0 6.0 6.0 6.0 7.5 7.5 7.5 7.5 7.5 8.5 9.5 8.5 9.5	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 8.0 8.5 9.0 9.0	MAX 4.55 4.55 5.00 4.05 4.05 2.05 1.55 3.55	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 3.0	MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 2.0 3.0 3.5 3.5	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	8.0 7.5 7.0 7.5 8.5 8.0 7.5 8.0 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	MIN OCTOBE 6.0 6.0 6.0 7.5 7.5 7.5 7.5 8.5 9.5 7.5 8.5 9.5 7.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 9.0 9.0 9.0 9.0 7.0 7.0	MAX 4.5555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 4.555.0 5.555.5 5	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.5 2.5 1.5 1.0 3.5 2.5 1.5 3.0	MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 2.0 3.0 2.0 3.5 2.0 3.0 3.0 3.1 3.0 3.0 3.0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	8.0 7.5 7.0 7.5 8.5 7.5 8.5 7.5 8.5 9.5 9.5 9.5 7.6 6.0	MIN OCTOBE 6.00 6.00 6.00 7.55 7.55 7.55 7.55 8.50 8.50 8.50 7.55 8.50	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 9.0 9.0 9.0 9.0 7.0 7.0	MAX 555500 50505 555555 55 55 55 55 55 55 5	MIN NOVEMBER 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.5 1.5 1.0 1.0 1.5 2.5 3.0 3.5 2.5 1.5 0.0	MEAN ER 4.0 4.5 4.5 4.5 4.5 1.5 1.5 1.5 1.5 1.5 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24	8.05.0005 7.005 8.05.50 8.05.50 8.05.50 9.005 9.005 0.005 0.005	MIN OCTOBE 6.00 6.05 7.05 5.05 5.05 5.05 5.05 5.05 5.05 5	MEAN 7.0 6.5 7.0 7.5 8.0 8.5 7.5 8.0 9.0 9.0 9.0 9.0 5.5 5.5 3.0	MAX 4.555500 50505 555055 55505 4.321.123333 333321	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 1.5 1.0 1.0 1.5 2.5 1.5 0 0 0 0 0	MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 2.0 3.0 3.5 2.0 1.5 0 0.0 0.0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 4 25	8.05.005 7.005 8.05.50 8.05.50 8.05.50 9.005 9.005 9.005 0.000	MIN OCTOBE 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.5 7.5 7.5 8.0 9.0 9.0 9.0 9.0 7.0 7.0	MAX 555500 50505 55055 55555 550 44321 123333 33321	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.5 1.5 1.0 1.0 1.5 2.5 1.5 1.0 0 0 0 0 0	MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 1.5 2.0 3.0 2.0 1.0 0.0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 32 42 5 26	8.05 7.50 7.00 7.50 7.50 8.05 5.00 8.05 5.00 9.00 9.00 9.00 9.00 9.00 9.00 9	MIN OCTOBE 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	MEAN 7.0 6.5 7.0 6.5 7.0 7.5 8.0 8.0 7.5 7.5 8.0 9.0 9.0 9.0 9.0 9.0 1.5	MAX 4.5555.00 50505 555055 555000 0 4.321 123333 33332100 0	MIN NOVEMBER 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.5 2.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 2.0 3.0 2.0 1.5 2.0 3.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 32 42 5 26	8.0 7.5 7.0 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9	MIN OCTOBE 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	MEAN 6.5 7.0 6.5 7.0 8.0 7.5 8.0 7.5 8.0 9.0 9.0 9.0 9.0 8.0 7.0 5.5 1.0 1.0	MAX 555500 50505 555055 555000 000 100 100	MIN NOVEMBER 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.5 5.5 1.0 1.0 1.5 5.5 1.0 0 0.0 0.0 0.0	MEAN ER 4.0 4.5 4.5 4.5 4.5 1.5 1.5 1.5 1.5 1.0 3.0 3.0 3.5 3.0 2.0 1.0 0.0 0.0	MAX .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 32 42 5 26	8.550005 8.550005 8.655000 8.65500	MIN OCTOBE 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	MEAN 7.0 6.5 6.5 7.0 7.5 8.0 8.0 7.55 7.5 8.0 8.0 7.55 7.5 8.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 8.0 8.0 7.5 7.5 8.0 8.0 7.5 8.0 8.0 7.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	MAX 4.555.00 5.0505 5.5055 5.55555 5.5555 5.5000 0.00	MIN NOVEMBE 4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.5 1.5 1.0 1.0 1.0 1.5 2.5 1.5 1.0 0 0 0 0 0 0 0 0 0 0 0	MEAN ER 4.0 4.5 4.5 4.5 4.5 1.5 2.0 3.0 3.5 3.5 3.0 0 1.0 0 0 0 0 0 0 0 0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 4 25	8.05 7.50 7.00 7.50 7.50 8.05 5.00 8.05 5.00 9.00 9.00 9.00 9.00 9.00 9.00 9	MIN OCTOBE 6.00 6.05 7.05 5.05 5.05 5.05 5.05 5.05 5.05 5	MEAN 7.0 6.5 7.0 6.5 7.5 8.0 8.0 7.5 7.5 8.0 9.0 9.0 9.0 9.0 9.0 9.0 1.0 1.0 1.0 2.0	MAX 555500 50505 550055 555555 55000 00000 00000	MIN NOVEMBER 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.5 5.5 1.0 1.0 1.5 5.5 1.0 0 0.0 0.0 0.0	MEAN ER 4.0 4.5 4.5 4.5 4.5 2.0 1.5 2.0 3.5 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0	MAX .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	MIN DECEMBE .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN R .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAF .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

.0

MONTH

9.5

•5

6.0

5.0

•0

2.0

.0

.0

.0

.0

LAKE OF THE WOODS BASIN 05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRII	_		MAY	
1 2 3 4 5	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	00000	10.5 10.5 12.0 12.5 12.5	9.5 10.0 10.5 11.5 12.0	10.0 10.5 11.0 12.0 12.0
6 7 8 9 10	.0 .0 .0	.0 .0 .0	.0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	12.0 11.5 11.0 11.0	11.5 10.5 10.0 10.5 10.5	11.5 11.0 10.5 10.5 11.5
11 12 13 14 15	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	12.0 11.5 11.5 11.5 11.5	11.5 11.0 11.0 11.5 11.5	11.5 11.5 11.5 11.5 12.0
16 17 18 19 20	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0	14.0 14.5 15.0 14.5 14.0	13.0 14.0 14.5 13.5 13.5	13.5 14.5 15.0 14.5 13.5
21 22 23 24 25	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .5 2.0 4.5 6.0	.0 .5 2.0 4.5	.0 .5 1.0 3.0 5.5	14.0 14.5 15.0 16.0 17.0	13.5 13.5 14.0 15.0 16.0	13.5 14.0 14.5 15.5 16.5
26 27 28 29 30 31	.0 .0 .0	.0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	7.0 7.5 8.5 9.0 10.0	6.0 7.0 7.5 8.0 9.0	6.5 7.5 8.0 8.5 9.5	18.0 19.0 20.0 20.0 19.5 19.0	16.5 17.5 18.0 19.0 18.5 18.0	17.5 18.5 19.0 19.5 19.0 18.5
MONTH	.0	.0	•0	•0	•0	.0	10.0	•0	1.5	20.0	9.5	13.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SE PTEME	MEAN BER
DAY 1 2 3 4 5	MAX 18.0 17.0 17.0 17.5 18.0		MEAN 17.0 16.5 16.5 16.5	MAX 21.5 22.0 22.0 23.0 24.0		MEAN 20.5 21.0 21.5 22.0 23.0	MAX 23.5 23.0 23.0 24.0 25.5			MAX 18.0 18.0 18.5 20.0 19.5		
1 2 3 4	18.0 17.0 17.0 17.5	JUNE 16.5 15.5 15.5 16.0	17.0 16.5 16.5 16.5	21.5 22.0 22.0 23.0	JULY 19.0 20.0 21.5 21.0	20.5 21.0 21.5 22.0	23.5 23.0 23.0 24.0	AUGUST 21.5 20.5 21.5 21.5	22.5 21.5 22.0 22.5	18.0 18.0 18.5 20.0	SEPTEME 16.0 16.5 15.5 16.0	17.0 17.0 17.0
1 2 3 4 5 6 7 8 9	18.0 17.0 17.0 17.5 18.0 17.5 17.5 17.5	JUNE 16.5 15.5 16.0 17.0 17.5 16.5 16.5	17.0 16.5 16.5 16.5 17.5 17.5 17.0 17.0	21.5 22.0 22.0 23.0 24.0 25.5 24.5 23.5	JULY 19.0 20.0 21.5 21.0 22.0 23.5 23.0 21.5 21.5	20.5 21.0 21.5 22.0 23.0 24.5 23.5 23.5 22.0	23.5 23.0 23.0 24.0 25.5 25.0 25.5 23.5 21.0	AUGUST 21.5 20.5 21.5 21.5 22.0 23.0 23.0 21.0 19.5	22.5 21.5 22.0 22.5 23.5 24.0 24.0 22.5 20.5	18.0 18.0 18.5 20.0 19.5 18.5 17.5 19.0 20.5	SEPTEME 16.0 16.5 15.5 16.0 17.5 16.5 16.5 17.0 18.0	17.0 17.0 17.0 17.5 18.0 17.5 17.0 18.0 19.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	18.0 17.0 17.0 17.5 18.0 18.0 17.5 17.0 16.5	JUNE 16.5 15.5 16.0 17.0 17.5 16.5 16.0 15.0 15.5 16.0 17.0	17.0 16.5 16.5 17.5 17.0 17.0 16.5 16.0	21.5 22.0 22.0 23.0 24.0 25.5 24.5 23.5 23.5 21.5	JULY 19.0 20.0 21.5 21.0 22.0 23.5 23.0 21.5 21.5 21.0 20.5 20.5 21.0 21.0	20.5 21.0 21.5 22.0 23.0 24.5 23.0 22.0 21.0 21.5 21.5 21.5 22.0	23.5 23.0 23.0 24.0 25.5 25.5 21.0 21.0 21.0 21.0 22.5	21.5 20.5 21.5 21.5 22.0 23.0 23.0 21.0 19.5 18.5 20.0 20.0	22.5 21.5 22.0 22.5 23.5 24.0 22.5 20.5 19.5 20.0 20.5	18.0 18.5 20.0 19.5 17.5 17.5 19.0 20.5 22.0 21.0 19.5 18.0	SEPTEME 16.0 16.5 15.5 16.0 17.5 16.5 17.0 18.0 19.5 20.0 18.0 16.5 15.0	17.0 17.0 17.0 17.5 18.0 17.5 18.0 19.0 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	18.0 17.0 17.5 18.0 18.0 17.5 17.5 17.5 17.5 17.0 16.5 17.5 19.0 19.0	JUNE 16.5 15.5 16.0 17.0 17.5 16.5 16.0 17.0 17.5 17.0 17.5 17.0 17.6	17.0 16.5 16.5 17.5 17.0 17.0 16.5 16.5 17.0 18.0 18.0 18.0 17.5 17.5	21.5 22.0 22.0 23.0 24.0 25.5 23.5 23.5 21.5 22.5 22.5 23.0 23.0 23.0 23.0	JULY 19.0 20.0 21.5 21.0 22.0 23.5 21.5 21.0 20.5 21.0 20.5 21.0 21.5 22.0 21.5	20.5 21.0 21.5 22.0 23.0 24.5 23.0 21.0 21.5 22.0 21.5 22.0 22.0 22.0 22.0	23.5 23.0 24.0 25.5 25.5 25.5 21.0 21.0 21.5 21.5 24.0 25.5 24.0	21.5 20.5 21.5 21.5 22.0 23.0 21.0 23.0 21.0 19.5 18.5 20.0 20.0 21.0	22.5 21.5 22.5 22.5 23.5 24.0 22.5 20.5 19.5 20.5 21.0 22.5 23.5 23.5 23.5 22.5 23.5	18.0 18.0 18.5 20.0 19.5 18.5 17.5 19.0 20.5 22.0 21.5 18.0 16.5 15.0	SEPTEME 16.0 16.5 15.5 16.0 17.5 16.5 17.0 18.0 19.5 20.0 18.0 14.0 13.0 13.0 12.5 13.0	17.0 17.0 17.0 17.5 18.0 17.5 18.0 19.0 20.5 20.5 19.0 14.5 13.5 13.5 13.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24	18.0 17.0 17.5 18.0 17.5 17.5 17.5 17.0 16.5 17.0 17.5 19.0 18.0 18.0 18.5 17.5 17.5	JUNE 16.5 15.5 15.5 16.0 17.0 17.5 16.5 16.0 17.5 16.0 17.5 16.0 17.5 17.0 16.5 17.0 16.5 16.0 16.5 17.5	17.0 16.5 16.5 16.5 17.5 17.0 17.0 16.0 16.5 17.0 18.0 18.0 17.5 17.0 17.0 17.5 17.0	21.5 22.0 22.0 23.0 24.0 25.5 23.5 21.5 22.5 23.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	JULY 19.0 20.0 21.5 21.0 22.0 23.5 21.5 21.0 20.5 21.5 21.0 20.5 21.0 21.5 21.0 21.5 21.0 22.0 21.5 21.0 22.0 21.5 21.0 22.0 23.0 23.0 23.0	20.5 21.0 21.5 22.0 23.0 24.5 23.0 22.0 21.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22	23.5 23.0 23.0 24.0 25.5 25.5 21.0 21.5 21.0 22.5 24.0 25.5 24.0 25.5 24.0 25.5 24.0 25.5	AUGUST 21.5 20.5 21.5 21.5 22.0 23.0 21.0 21.0 18.5 18.5 20.0 21.0 21.5 22.5 21.5 20.0 21.0	22.5 21.5 22.5 22.5 23.5 24.0 22.5 20.5 21.0 20.5 21.0 22.5 21.0 22.5 22.5 21.0 22.5 21.0 22.5 21.0 22.5 21.0 22.5 21.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	18.0 18.5 20.0 19.5 18.5 17.5 19.0 22.0 21.0 19.5 18.0 16.5 14.0 13.0 13.0 13.0 13.0	SEPTEME 16.0 16.5 15.5 16.0 17.5 16.5 17.0 18.0 19.5 20.0 18.0 14.0 13.0 12.5 13.0 12.5 11.5 11.5	17.0 17.0 17.5 18.0 17.5 18.0 19.0 20.5 20.5 19.0 14.5 13.5 13.5 12.5 12.5

05133500 RAINY RIVER AT MANITOU RAPIDS, MN

(International gaging station)

LOCATION.--Lat 48°38'04", long 93°54'47", in NW&SE& sec.36, T.160 N., R.26 W., Koochiching County, Hydrologic Unit 09030004, on left bank at Manitou Rapids, 4 mi (6 km) west of Indus.

DRAINAGE AREA.--19,400 mi² (50,200 km²), approximately.

PERIOD OF RECORD.--July 1928 to current year. Monthly discharge only for some periods, published in WSP 1308. October 1911 to October 1924 (gage heights only) at site near Birchdale in files of Corps of Engineers. Published as "near Birchdale" 1932-34.

GAGE.--Water-stage recorder. Datum of gage is 1,062.48 ft (323.844 m) National Geodetic Vertical Datum of 1929. Prior to Nov. 10, 1934, nonrecording gage at site near Birchdale 7 mi (11 km) downstream at different datum.

REMARKS.--Records good. Diurnal fluctuation caused by powerplant at International Falls. Some regulation at low and medium flows by Rainy and Namakan Lakes.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

AVERAGE DISCHARGE.--54 years, 12,790 ft 3 /s (362.2 m 3 /s), 8.95 in/yr (227 mm/yr).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 71,600 ft 3 /s (2,030 m 3 /s) May 12, 1950, gage height, 21.04 ft (6.413 m); minimum daily, 928 ft 3 /s (26.3 m 3 /s) Dec. 26, 1929.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $38,400 \text{ ft}^3/\text{s}$ (1,090 m $^3/\text{s}$) Apr. 22, gage height, 14.03 ft (4.276 m); minimum, 5,400 ft $^3/\text{s}$ (153 m $^3/\text{s}$) Oct. 1, gage height, 2.86 ft (0.872 m).

			DISCHAF	RGE, IN	CUB	IC FEET	PER SE	COND, MEAI	WATER VALU	YEAR OC	TOBER 1	1981	TO SEPTEM	BER 1982		
DAY	OC'	T	NOA	DEC	;	JAN	FEI	3	MAR	APR	М	ΑY	JUN	JUL	AUG	SEP
1 2 3 4 5	556 619 708 771 826	0 0 0	8270 8910 9400 9560 8810	8730 9470 9570 9670 9670)))	9000 7500 8000 9000 9000	8500 8500 9000 8500 8000) 10	9500 0000 9500 0000 9500	8660 7750 7470 7280 7210	223 212 209 196 190	00 00 00	28000 28700 28400 27800 26000	11400 8930 9790 10300 10400	23200 23400 23300 23200 23100	10800 10200 9850 9680 9630
6 7 8 9 10	928 1060 1130 1120 1090	0 0 0	8350 8810 8680 8580 8340	9730 9440 9400 9360 9300) }	9500 9500 8500 8500 8500	9000 9000 9000 8500 8500)	0000 9500 9500 9500 9500	7170 7130 7090 7070 6980	213 233 229 220 206	00 00	25000 24700 24600 24600 25600	10900 12000 12600 13000 15500	23000 21600 20800 20200 17200	9430 7800 8460 8730 8410
11 12 13 14 15	1060 1020 985 960 943	0 0 0	8480 8220 8180 8340 8380	9200 9200 9200 9200 9200)))	9000 9000 9000 9000 8500	8500 8500 8500 9000 9000) 10) 10) 10	0000 0000 0000 0000 9500	7080 6800 6820 7710 9740	202 209 213 215 228	00 00	28000 28900 28800 28400 27900	16500 17100 19200 20200 21500	15800 15200 12500 11100 10700	8420 8540 8620 8550 8560
16 17 18 19 20	920 896 889 938 1020	0 0 0	8470 8950 9110 8950 8810	9200 9200 9200 9200 9200)))	9000 8500 9000 9000 9000	8500 9000 9000 9000 8500) 1	9000 9500 9500 0500 0000	13500 17700 21500 24700 27900	254 278 287 296 320	00 00 00	27500 27100 26800 26600 26300	22200 23900 24300 24300 23500	10600 10600 10700 10700 10700	8700 8940 8900 8620 8390
21 22 23 24 25	1050 1030 992 979 956	0 0 0	8520 8250 8110 8140 8220	9200 9000 8500 8000 7500)))	9000 8500 8500 8000 8000	8500 9000 8500 9000 8500) 10	0000 0000 0000 9500 9380	33300 37700 35200 32800 31100	338 343 313 283 267	00 00 00	25800 23200 19200 17200 16 7 00	19100 17000 16500 16300 16200	11000 11200 11300 11200 11300	8050 8110 7700 7620 7460
26 27 28 29 30 31	921 875 854 835 826 801	0 0 0 0	8420 8360 8530 8500 8430	6000 7500 8000 8500 9000 9200)))	8000 8500 8500 8000 8000 8500	8500 9500 9500) ;	8890 8670 8360 3300 7930 3320	30500 29200 27300 25400 23600	281 278 270 264 258 259	00 00 00	14200 12800 12500 12100 11900	16100 16100 17400 19900 21000 22600	11400 11300 11300 11300 11200 11200	7230 7210 7480 7580 7790
TOTAL MEAN MAX MIN CFSM IN.	28558 921 1130 556 •4	2 0 0 8	57080 8569 9560 8110 .44	276740 8927 9730 6000 •46	,)) ;	267500 8629 9500 7500 •45 •51	245000 8750 9500 8000 • 45) 1	4350 9495 0500 7930 •49 •56	523360 17450 37700 6800 .90 1.00		20	705300 23510 28900 11900 1.21 1.35	525720 16960 24300 8930 .87 1.01	461300 14880 23400 10600 •77 •88	255460 8515 10800 7210 .44
CAL YR WTR YR		TOTAL TOTAL			IEAN IEAN	10710 13360	MAX MAX	29800 37700	MIN MIN		CFSM CFSM		IN 7.50 IN 9.35			

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1968-70, October 1977 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1980 to September 1982.
WATER TEMPERATURES: October 1980 to September 1982.

INSTRUMENTATION. -- Water-quality minimonitor since October 1980.

REMARKS.--Letter K indicates non-ideal colony count.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum, 166 micromhos July 2, 1982; minimum, 72 micromhos July 31, Aug. 2, 1982. WATER TEMPERATURES: Maximum, 25.0°C July 18, Aug. 14, 1981; minimum, 0.0°C several days during winter period.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 166 micromhos July 2; minimum, 72 micromhos July 31, Aug. 2.
WATER TEMPERATURES: Maximum, 23.5°C July 6, Aug. 17; minimum, 0.0°C several days during winter period.

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE, AIR (DEG C) (00020)	TEMPER- ATURE (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
OCT 01	1145		5540	123	120	8.1	7.3	2.0	7.5	731
DEC 15	1045	9 200		123	75	7.6	7.4	-20.0	.0	735
FEB 02	1130	8500		100	79	7.4	7.5	25.0	.0	7 39
MAY 20	1230		32100	114	104	7.6	7.4	16.0	13.5	734
\mathtt{JUL}							·			
20 SEP	1530		23600	79	65	7.4	7.1	30.0	19.5	728
14	1130		8530	105	85	7.3	7.5	8.0	15.0	738
DATE	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STRE P- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS (MG/L AS CACO3) (00900)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3) (95902)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
OCT	- 0	(4.10	0 -			
01 DEC	3.8	10.6	92	K11000	730	44	8.0	12	3.5	3.5
15 FEB	1.6	13.4	95	к6500	150	30	7.0	8.4	2.3	3.2
02 MAY	6.0	12.0	85	600	390	32	9.0	8.8	2.4	3.8
JUL 20	27	8.6	86	K700	410	53	5.0	14	4.3	2.6
20 SEP	2.5	8.1	92	440	110	27	4.0	7.3	2.1	1.8
14	3.4	7.7	79	K840	900	27	.00	7.6	2.0	3.5
DATE	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)
OCT 01	.2	•9	36	5.7	6.4	<.1	2.4	78	56	1170
DEC _15	•3	.7	23	6.4	4.7	<.1	1.5	62	41	1540
FEB 02	•3	1.0	23	6.3	5.2	<.1	2.1	68	44	1560
20	•2	.8	48	7.0	2.7	<.1	3•3	97	64	8410
JUL 20	• 2	•5	23	4.0	1.9	.1	2.0	46	34	2930
SEP 14	•3	.6	27	5.0	4.1	<.1	.6	56	40	1290

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DA	ATE	NITR GEN NO2+N DIS SOLV (MG/ AS N	I, 103 A! S- YED S YL	VITRO- GEN, MMONIA DIS- SOLVED (MG/L AS N) 00608)	NIT GEN, MONI ORGA TOT (MG AS	A + NIC AL /L N)	PHOP PHOP TOT (MG AS	RUS, PAL P)		US, S- VED /L P)	PHO PHOR ORT DIS SOLV (MG/ AS P	US, HO, ED L		T, - DED /L)	SED MEN DI CHAR SU PEN (T/D (801	T, S- GE, S- DED AY)	SIE	SP. VE AM. NER AN MM
OCT	: l	_	.10	.070		.28		100		010				26		389		76
DEC			10	.040		.46		030		010	<.	010		4		99		67
FEB			15	•030		•59		010		010		010		12		280		89
MAY 20	?)		24	.020		.92		070		0 20	<.	010						
		<.	10	.030		.30		0 20		010	<.	010		4		284		68
SEP 14	· · · ·	<.	10	.070	1	.50		040	<.	010	<.	010		7		169		82
DATE	TI	ME	ARSENI TOTAI (UG/I AS AS	IC I L S(L (U S) AS	BENIC DIS- DLVED JG/L B AS)	TO RE ER (U AS	IUM, TAL COV- ABLE G/L BA)	DI SOL (U AS		TO RE ER (U AS	MIUM TAL COV- ABLE G/L CD) 027)	D] SO] (U(A S	MIUM IS- LVED 3/L CD))25)	MI TO RE ER (U	RO- UM, TAL COV- ABLE G/L CR)	(UG	M, S- VED I/L CR)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO) (01037)
OCT 01 FEB	11	45		3	3		<50		2		1		1		20		10	2
02 MAY	11	30		1	1		<100		15		1		<1		20		10	<1
20 SEP	12	30		2	1		<100		39		1		1		30		20	2
14	11	30		1	1		100		15		1		<1		<10		<10	3
DATE	COBA DIS SOLV (UG AS (010	ED /L CO)	COPPER TOTAL RECOVERABL (UG/I AS CV	(I COI I- DI LE S(I LE (I LE (I	PPER, SS- DLVED JG/L S CU) 1040)	TO RE ER (U AS	ON, TAL COV- ABLE G/L FE) 045)	SO (U AS	ON, IS- LVED G/L FE) 046)	TO RE ER (U AS	AD, TAL COV- ABLE G/L PB) 051)	SOI (U) AS	AD, IS- LVED G/L PB) D49)	NE TO RE ER (U AS	NGA- SE, TAL COV- ABLE G/L MN)	NES DI SOI (UG	S- VED /L MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)
OCT 01 FEB		1		6	<1		350		100		2		1		20		14	<.1
02 MAY		<1	:	26	4		110		46		3		1		10		5	<.1
20 SEP		2		9	5		1500		180		4		3		80		9	•5
14		2		6	4		200		46		4		4		20		3	.8
OCT 01 FEB 02 MAY 20 SEP	ATE		IRY 5 S- I FED I (L IG) A	ICKEL, FOTAL RECOV— ERABLE (UG/L AS NI))1067) 7 <1 8	(UG	VED /L NI)	SEL NIU TOT (UG AS (011	M, AL /L SE)	SEL NIU DI SOL (UG AS (011	M, S- VED /L SE)	SILV TOT REC ERA (UG AS (010	AL OV- BLE /L AG)	SILV DI SOL (UG AS (010	S- VED /L AG)	ZIN TOT REC ERA (UG AS (010	AL OV- BLE /L ZN)	ZIN DI SOL (UG AS (010	S- VED /L ZN)
				_														

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued

SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN OCTOBER	MEAN	MAX	MIN NOVEMBER	MEAN	М	AX DE	MIN CEMBER	MEAN	MAX	MIN JANUARY	MEAN
1 2 3 4 5	125 122 125 117 112	121 116 119 111 107	123 118 123 114 110	93 90 93 92 95	85 87 87 89 92	89 88 90 91 93	1	22 22 20 19 20	118 113 90 112 113	120 117 114 115 116	128 141 141 129 122	122 128 131 119 116	124 137 138 122 119
6 7 8 9 10	112 106 105 114 122	107 103 101 103 113	110 105 103 109 118	96 99 97 99 101	91 95 92 95 97	93 97 95 97 99	1 1 1	18 05 19 16 22	73 101 103 109 117	93 103 107 112 120	120 119 127 123 123	114 114 117 118 120	115 117 121 120 121
11 12 13 14 15	132 141 443 148 151	121 133 140 142 144	127 136 141 145 147	101 103 104 107 105	99 101 101 103 104	100 102 103 104 104	1 1	19 18 21 22 29	103 113 117 118 123	113 116 118 120 125	121 117 114 113 121	112 111 111 110 112	117 114 112 111 117
16 17 18 19 20	145 144 118 96 97	140 135 93 92 93	143 140 96 94 94	107 107 105 106 107	105 105 103 104 105	106 106 105 105 106	1 1	35 38 37 36 35	129 132 136 132 132	133 134 136 133 134	119 112 109 111 108	109 .106 105 108 105	115 109 107 110 107
21 22 23 24 25	96 95 99 90 91	93 90 88 89 88	94 93 91 89 89	111 110 102 107 111	106 99 96 100 108	109 106 99 104 110	1	35 33 39 43	132 131 130 137 143	134 132 134 141 144	112 117 114 115 110	106 111 108 111 105	108 114 111 114 107
26 27 28 29 30 31	92 90 91 100 93 93	87 88 88 90 88 90	89 89 89 92 91	110 113 119 122 125	107 111 113 118 119	108 112 117 120 122	1 1 1 1	37 35 29	142 138 132 131 124 123	145 146 134 134 126 124	110 108 108 108 110 109	107 100 101 102 108 98	109 105 105 104 109 102
MONTH	151	87	109	125	85	103			73	125	141	98	114
DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	M.	ΙX	MIN APRIL	ME AN	MAX	MIN MAY	MEAN
DAY 1 2 3 4 5	107 103 100 106 107			MAX 108 104 108 108		MEAN 105 99 105 106 106	M. 1. 1. 1. 1. 1.	27 11 58 53			MAX 117 120 123 123 125		MEAN 116 117 120 122 123
1 2 3 4	107 103 100 106	FEBRUARY 97 100 90	100 101 93 98 106	108 104 108	MARCH 103 95 100 104	105 99 105 106	1 1 1 1 1	27 11 58 53	APRIL 122 128 138 120	1 23 1 35 1 50 1 50	117 120 123 123 125 123	MAY 115 115 116 120	116 117 120 122
1 2 3 4 5 6 7 8 9	107 103 100 106 107 105 106	97 100 90 93 104	100 101 93 98 106	108 104 108 108	MARCH 103 95 100 104 105 105 106 107	105 99 105 106 106 108 110 111 113	1 1. 1. 1. 1. 1. 1.	27 11 18 18 18 13 13 13 14 19 19 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	APRIL 122 128 138 120 119	123 135 150 150 125 144 158 154 147	117 120 123 123 125 123	MAY 115 116 120 121 120 116 114 112	116 117 120 122 123 122 118 115
1 2 3 4 5 6 7 8 9 10 11 12 13 14	107 103 100 106 107 105 106 113 111 114 116 115	97 100 90 93 104 93 92 93 93 103 105 111 108 100	100 101 93 98 106 102 97 101 102 107	108 104 108 108 111 111 115 116 116 113 122 113	MARCH 103 95 100 104 105 106 107 107 108 109 112 109 100	105 99 105 106 106 111 113 113 111 117 111 105	1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	27 11 18 18 18 18 18 18 18 18 18 18 18 18	APRIL 122 128 138 120 119 133 153 145 144 144 147	123 135 150 150 125 144 154 147 147 146 149 145	117 120 123 123 125 123 121 116 115 117 117 118 121 131	MAY 115 116 120 121 120 116 114 112 112 113 113 113 114 100	116 117 120 122 123 123 115 115 115 115 115 116 106
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	107 103 100 106 107 105 106 113 111 114 115 107 104	97 100 90 93 104 93 92 93 103 105 111 108 100 102	100 101 93 98 106 102 97 101 102 107 109 113 113 102 104	108 104 108 108 111 111 115 116 116 113 1122 113 112 110 110 105 108	MARCH 103 95 100 104 105 105 106 107 107 108 109 112 109 100 104 108 105 103	105 99 105 106 106 108 110 111 113 113 111 117 111 105 108	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	27 11 18 18 18 18 18 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18	APRIL 122 128 138 120 119 133 153 145 144 147 147 147 133 128	123 135 150 150 1525 144 1547 147 149 149 149 149 141 133 138 141 142 149	117 120 123 123 125 121 116 117 117 118 121 131 116	MAY 115 115 116 120 121 120 116 114 112 112 113 114 100 101	116 117 120 122 123 122 118 115 115 115 116 106 103 101 101 103 107
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24	107 103 100 106 107 105 106 113 111 114 115 107 104 113 115 108 111 112 108 111	97 100 90 93 104 93 92 93 103 105 111 108 100 102 99 106 105 103 102	100 101 93 98 106 102 97 101 102 107 109 113 113 102 104 105 110 105 106	108 104 108 108 111 111 115 116 116 113 1122 113 112 110 110 105 108 107	MARCH 103 95 100 104 105 105 106 107 107 108 109 112 109 100 104 108 105 106 107 100 104 108 109 1100 104 108 105 106 107 108	105 99 105 106 106 108 110 111 113 113 111 105 108 109 107 104 107 104 107 104	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	27 18 18 18 18 18 18 18 18 18 18 18 18 18	APRIL 122 128 138 120 119 133 145 145 144 147 147 147 133 128 136 135 113 93 92 91 92 91 92 91	123 1350 1500 1525 1488 15477 149 149 149 149 149 149 149 149 149 149	117 120 123 125 121 116 117 117 117 118 121 131 116 102 108 111 112 101 104 121	MAY 115 115 116 120 121 120 116 114 112 113 114 100 101 99 100 101 105 107 102 98 98 97	116 117 120 122 123 122 118 115 113 115 115 116 106 103 101 101 103 107 109

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued SPECIFIC CONDUCTANCE (MICROMHOS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUG US'	r		SEPTEME	BER
1 2 3 4 5	113 116 107 108 113	109 106 103 106 108	110 110 105 108 111	156 166 164 152 147	118 146 134 132 128	142 156 150 142 134	87 92 85 90 89	73 72 76 75 74	76 80 82 79 79	118 113 118 115 116	93 99 100 101 99	102 104 109 107 104
6 7 8 9 10	114 111 113 112 113	110 105 105 108 108	112 110 110 111 111	135 146 151 144 126	126 121 128 111 116	130 134 135 125 121	88 96 93 97 105	74 77 78 81 88	79 88 82 88 98	110 135 128 125 120	98 101 99 99 104	104 115 116 111 110
11 12 13 14 15	110 108 107 106 106	106 105 103 104 101	108 106 105 105 103	137 137 126 132 110	109 108 99 94 93	127 124 116 114 99	103 94 117 117	86 87 92 104 95	90 91 104 109 103	120 116 119 99 99	102 100 93 97 96	108 107 97 99 97
16 17 18 19 20	105 103 103 103 106	102 99 98 100 102	104 102 100 102 104	112 110 109 106 96	92 87 76 86 78	96 95 94 92 87	104 107 111 110 112	96 93 94 100 102	99 97 101 104 106	100 103 109 112 112	97 98 103 109 111	99 100 106 110 111
21 22 23 24 25	114 117 128 134 134	102 106 114 115 117	105 111 122 122 122	119 108 109 106 104	85 92 85 88 85	109 100 98 96 91	116 114 114 110 120	98 100 97 99 100	107 107 102 105 111	116 117 120 117 115	111 115 116 111 111	114 116 118 115 113
26 27 28 29 30 31	149 144 144 150 141	116 122 124 126 119	132 137 133 133 131	109 100 95 99 94 90	85 82 85 75 77 72	95 88 92 83 83 77	124 115 110 112 107 109	99 101 97 90 88 91	104 108 101 100 101 99	115 115 123 123 122	113 113 113 119 116	114 113 119 121 119
MONTH YEAR	150 166	98 72	113 111	166	72	111	124	72	96	135	93	109
		T	EMPERATU	RE, WATER (I	DEG. C),	WATER Y	EAR OCTOBER	1981 TO	SEPTEMBE	R 1982		
DAY	MAX	MIN	EMPERATUI MEAN	RE, WATER (I	DEG. C), MIN	WATER Y	EAR OCTOBER	1981 TO MIN	SEPTEMBE:	R 1982 MAX	MIN	MEAN
		MIN OCTOBE	MEAN R	MAX	MIN NOVEMBE	ME AN	MAX	MIN DECEMB	MEAN ER	MAX	JANUA	RY
DAY 1 2 3 4 5	8.5 9.0 8.0 7.5	MIN	MEAN		MIN	MEAN		MIN	MEAN			
1	8.5 9.0 8.0	MIN OCTOBE 6.0 6.0 6.5	MEAN R 7.5 7.5	MAX 5.0 5.0 6.0	MIN NOVEMBE 3.5 4.0 4.0	MEAN ER 4.5 4.5 4.5 5.0	.0 .5 .0	MIN DECEMB	ME AN ER .0 .0 .0 .0	.0 .0 .0	JANUAR .0 .0 .0	.0 .0 .0
1 2 3 4 5 6 7 8 9	8.5 9.0 8.0 7.5 8.0 9.0 8.5 8.0	MIN OCTOBE 6.0 6.0 6.5 7.5 7.5 7.5 7.5	MEAN R 7.5 7.5 7.5 8.0 8.0 8.0	5.0 5.0 5.0 6.0 5.5 4.5 4.0 2.0	MIN NOVEMBE 3.5 4.0 4.5 4.0 3.5 4.0	MEAN ER 4.5 4.5 5.0 5.0 4.0 4.0 3.0	.0 .5 .0 .0 .0	MIN DECEMBI .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0	JANUAH .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	8.5 9.0 8.5 9.5 9.5 9.5 9.5 9.0 7.5 9.0	MIN OCTOBE 6.0 6.0 6.5 7.5 7.5 7.5 7.5 8.0 8.5 9.0	MEAN R 7.5 7.5 7.5 8.0 8.0 8.0 7.5 8.0 9.5	MAX 55.0 55.0 6.0 5.5 4.5 4.0 2.0 2.5 3.5 5.0	MIN NOVEMBE 3.5 4.0 4.0 4.5 4.0 3.5 3.0 2.0 1.5 1.5 2.0	MEAN ER 4.5 4.5 5.0 4.0 3.0 2.0 1.5	.0 .5 .0 .0 .0 .0	MIN DECEMBI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0	JANUAI	.0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	50050 .50050 .5055 .5055 .550	MIN OCTOBE 6.0 6.5 7.5 7.5 7.5 7.5 8.0 8.5 9.0 8.6 6.0 6.0	MEAN 7.5 7.5 8.0 8.0 8.0 7.5 8.5 9.5 9.0 9.0 7.0 6.5	MAX 5.0 5.0 6.0 5.5 4.5 4.0 2.0 2.5 3.5 4.0 4.0	MIN NOVEMBE 3.5 4.0 4.0 4.0 4.0 53.0 1.5 1.5 2.0 3.5 2.0 3.5 2.0 3.5 2.0 3.5 2.0 3.5 2.0 3.5 2.0 3.5 2.0 3.5 2.0 3.5 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	MEAN ER 4.5 5.0 4.0 3.0 2.0 3.5 4.0 3.5 4.0 3.5 3.5 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	.0 .5 .0 .0 .0 .0 .0	MIN DECEMBI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	50050 05055 00555 55050 5500 898.78 9888.78 99999 99877 5432	MIN OCTOBE 6.0 6.5 7.5 7.5 7.5 7.5 8.5 9.0 8.0 6.0 6.5 4.5 3.0	MEAN R 7.55 7.55 8.0 8.0 8.0 8.55 9.55 9.0 9.0 9.0 6.55 4.0 2.55	MAX 55.0 55.0 6.0 5.5 4.5 4.0 2.0 2.0 2.5 3.5 4.0 4.0 3.5 5.1	MIN NOVEMBER 34.0 4.0 5.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	MEAN ER 4.55 5.00 4.00 32.05 1.55 2.00 33.55 3.55 4.55 0.00 0.00	MAX .0 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MIN DECEMBI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	JANUAI .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	1	MAX	MIN	MEAN	XAM	MIN	MEAN
		FEBRUAR'	Y		MARCH				APRIL			MAY	
1 2 3 4 5	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0		•5 •0 •0 •0	.0 .0 .0	.0 .0 .0	10.0 10.5 11.5 12.0 11.5	8.5 9.0 9.5 11.0 11.0	9.5 10.0 10.5 11.5 11.5
6 7 8 9 10	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0		.0 1.0 1.5 1.0	.0 .0 .5	.0 .5 1.0	11.5 10.5 10.0 10.5 11.0	10.5 9.5 9.0 9.5 9.5	11.0 10.0 9.5 9.5 10.0
11 12 13 14 15	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0		2.0 1.0 2.5 3.0 2.0	.0 .5 .5 1.0	.5 1.0 1.5 2.0 1.5	11.0 11.0 10.5 10.5 12.0	10.5 10.0 10.5 10.5 10.5	10.5 10.5 10.5 10.5 11.0
16 17 18 19 20	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0		1.5 1.0 1.5 1.5	1.0 .5 .0 .0	1.0 .5 .5 .5	12.5 13.0 13.5 13.5	12.0 12.0 13.0 13.0 12.5	12.0 12.5 13.5 13.5 13.0
21 22 23 24 25	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0		1.5 2.0 3.5 5.5 6.5	.0 2.0 3.5 5.5	.5 1.0 3.0 4.5 6.0	13.5 14.0 14.5 15.0 16.0	13.0 13.0 13.0 14.0 15.0	13.0 13.5 14.0 14.5 15.5
26 27 28 29 30 31	.0	.0 .0 .0 	.0 .0 .0	.0 .5 .0 .5	.0 .0 .0 .0	.0 .0 .0 .0		7.5 8.0 8.5 9.0	6.5 7.0 7.0 7.5 8.5	7.0 7.5 7.5 8.0 9.0	16.5 17.0 18.5 18.5 18.0 16.5	15.5 15.5 17.0 18.0 17.0 14.0	16.0 16.0 18.0 18.0 17.5
MONTH	.0	•0	•0	•5	•0	.0		9•5	•0	2.0	18.5	8.5	12.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	:	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMB	
DAY 1 2 3 4 5	MAX 14.5 13.0 13.5 14.0 15.0		MEAN 14.0 12.5 13.0 13.5 14.5	MAX 21.0 22.0 21.5 22.5 22.5		MEAN 19.0 20.0 20.5 21.0 21.5	2 2 2 2	1.5 1.0 1.0 1.5 2.5		MEAN 21.0 20.5 20.5 21.0 21.5	MAX 18.5 17.5 18.0 19.5 18.5		
1 2 3 4	14.5 13.0 13.5 14.0	JUNE 12.5 12.0 12.0 12.5	14.0 12.5 13.0 13.5	21.0 22.0 21.5 22.5	JULY 17.0 18.5 20.0 19.5	19.0 20.0 20.5 21.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.5 1.0 1.0	AUGUST 20.0 19.5 20.5 20.5	21.0 20.5 20.5 21.0	18.5 17.5 18.0 19.5	SEPTEMB 16.5 16.5 15.5 16.0	17.5 17.0 17.0 17.5
1 2 3 4 5 6 7 8 9	14.5 13.0 13.5 14.0 15.0	JUNE 12.5 12.0 12.0 12.5 13.5 13.5 13.5 13.5	14.0 12.5 13.0 13.5 14.5 14.0 13.5 13.5	21.0 22.0 21.5 22.5 22.5 21.5 21.5 21.5	JULY 17.0 18.5 20.0 19.5 20.0 21.0 20.0 19.0 17.5	19.0 20.0 20.5 21.0 21.5 22.0 21.0 20.0 18.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.5 1.0 1.0 1.5 2.5 2.5 3.0 2.5	AUGUST 20.0 19.5 20.5 20.5 21.0 21.5 22.0 21.0 19.0	21.0 20.5 20.5 21.0 21.5 22.0 22.5 22.0	18.5 17.5 18.0 19.5 18.5	SEPTEMB 16.5 16.5 15.5 16.0 16.5 15.5 15.5 17.5	17.5 17.0 17.0 17.5 17.5 17.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	14.5 13.0 13.5 14.0 15.0 14.5 14.5 14.5 14.5 14.5	JUNE 12.5 12.0 12.0 12.5 13.5 13.5 13.6 13.5 13.0 14.0 14.0 14.5 15.0	14.0 12.5 13.0 13.5 14.5 14.0 13.5 13.5 14.0 14.0 14.0 14.5 14.5	21.0 22.0 21.5 22.5 22.5 21.5 21.5 21.5 21.5 21.5	JULY 17.0 18.5 20.0 19.5 20.0 21.0 20.0 19.0 17.5 17.0 18.0 19.0 20.0 19.5	19.0 20.0 20.5 21.0 21.5 22.0 21.0 20.0 18.5 18.0 19.5 20.5 20.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.5 1.0 1.0 1.5 2.5 2.5 2.5 1.0 0.0 0.5 1.5 1.5	AUGUST 20.0 19.5 20.5 20.5 21.0 21.5 22.0 21.0 19.0 18.5 18.5 19.5 19.5	21.0 20.5 20.5 21.0 21.5 22.0 22.5 22.0 20.0 19.0 20.0 20.0 20.5	18.5 17.5 18.0 19.5 18.0 19.5 20.5 20.5	SEPTEMB 16.5 16.5 15.5 16.5 15.5 17.5 18.5 18.5 16.5 14.5	17.5 17.0 17.0 17.5 17.5 17.5 17.0 18.0 19.0 19.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	14.50 13.05 13.00 14.00 14.50 14.50 14.50 14.50 16.00 15.50 15.50	JUNE 12.5 12.0 12.0 12.5 13.5 13.5 13.5 13.0 14.0 14.5 15.0 15.0	14.0 12.5 13.0 13.5 14.5 14.0 13.5 13.5 14.0 14.5 14.5 15.0 15.5	21.0 22.0 21.5 22.5 22.5 21.5 21.5 21.5 21.5 21.5	JULY 17.0 18.5 20.0 19.5 20.0 21.0 20.0 19.0 17.5 17.0 18.0 19.0 20.0 19.5 20.0 21.6 21.7 20.0 21.8 20.0 21.8	19.0 20.0 20.5 21.0 21.5 22.0 20.0 18.5 18.5 20.5 20.5 20.5 20.5 20.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0 1.0 1.0 1.0 5 5 5 0 1.0 5 5 0 0 1.0 5 5 0 0 1.0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AUGUST 20.0 19.5 20.5 21.0 21.5 22.0 21.0 19.0 19.5 19.5 19.5 20.0 20.5 20.5 20.5	21.0 20.5 20.5 21.0 21.5 22.0 22.5 22.0 20.0 20.0 20.5 21.0 21.5 21.5 21.5 21.5 21.5	18.5 17.5 18.0 19.5 18.0 19.5 20.5 20.5 20.5 16.5 16.0 15.0	SEPTEMB 16.5 16.5 16.5 16.5 16.5 16.5 17.5 18.5 18.5 14.0 13.0 13.0	17.5 17.0 17.5 17.5 17.5 17.0 18.0 19.5 19.5 19.5 14.5 14.0 14.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 19 20 21 22 3 24	14.05 14.05 14.05 14.05 14.05 14.05 14.00 155.05 155.05 155.05 156.05 17.05	JUNE 12.5 12.0 12.0 12.5 13.5 13.5 13.5 13.0 14.0 14.5 15.0 15.0 14.5 15.0 14.5	14.0 12.5 13.0 13.5 14.5 14.0 13.5 14.0 14.5 14.5 15.0 15.0 15.0 15.0 15.0 17.0	21.0 22.0 21.5 22.5 22.5 21.5 21.5 21.5 21.5 21.5	JULY 17.0 18.5 20.0 19.5 20.0 21.0 20.0 19.5 17.0 18.0 19.5 20.0 21.5 19.0 21.5 19.0 20.5 21.0 21.5	19.0 20.0 20.5 21.0 21.5 22.0 20.5 18.0 19.5 20.5 20.5 20.5 20.5 21.5 20.5 20.5 21.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.5 1.0 11.5 5 23.5 1.0 0 11.5 5 23.5 1.0 0 11.5 5 0 11.5 5 0 11.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	AUGUST 20.0 19.5 20.5 21.0 21.5 22.0 21.0 19.0 18.5 19.5 20.0 20.5 20.0 20.5 20.0 19.0 19.0 19.0	21.0 20.5 20.5 21.0 21.5 22.0 22.5 22.0 20.0 20.0 20.0 21.5 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	18.5 17.5 18.0 19.5 18.0 19.5 20.5 20.5 20.5 16.5 16.0 14.5 14.5 14.0 15.0 14.5 14.0	SEPTEMB 16.5 16.5 15.5 16.5 16.5 17.5 18.5 18.5 14.0 13.0 12.0 12.0 12.0	17.5 17.0 17.5 17.5 17.5 17.0 18.0 19.0 19.5 19.0 15.5 14.0 14.0 14.0 13.0

05134200 RAPID RIVER NEAR BAUDETTE, MN

LOCATION.--Lat 48°32'10", long 94°33'45", in SEiNE; sec.1, T.158 N., R.31 W., Lake of the Woods County, Hydrologic Unit 09030007, on left bank 20 ft (6 m) upstream from bridge on State Highway 72, 1.2 mi (1.9 km) downstream from North Branch Rapid River, and 12 mi (19 km) south of Baudette.

DRAINAGE AREA .-- 543 mi² (1,406 km²).

PERIOD OF RECORD. -- October 1956 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,093.92 ft (333.427 m) National Geodetic Vertical Datum of 1929 (Minnesota Department of Transportation bench mark).

REMARKS .-- Records fair except those for winter period, which are poor.

AVERAGE DISCHARGE.--26 years, 311 ft 3 /s (8.808 m 3 /s), 7.78 in/yr (198 mm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,550 ft 3 /s (214 m 3 /s) Apr. 26, 1979, gage height, 21.13 ft (6.440 m); no flow Dec. 20, 1976 to Mar. 9, 1977.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 11, 1950, reached a stage of 21.1 ft (6.431 m), from information by local residents and Minnesota Department of Transportation, discharge, about 7,500 ft³/s (210 m³/s).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,000 ft³/s (113 m³/s) Apr. 16, gage height, 15.4 ft (4.69 m), from high-water mark (backwater from ice); minimium daily discharge, 14 ft³/s (0.40 m³/s) Feb. 24 to March 26; minimum gage height, 2.49 ft (0.759 m) Mar. 9.

		DISCHARGE	, IN CU	BIC FEET	PER SECOND	, WATER S EAN VALUE	YEAR OCTO S	BER 1981	TO SEPTEM	IBER 1982		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	382 595 605 6 7 5 771	455 432 405 385 370	135 130 125 120 115	32 31 29 28 27	15 15 15 15 15	14 14 14 14 14	50 60 60 60 55	878 828 786 937 1410	425 395 352 312 280	128 121 107 94 182	385 360 328 287 249	192 196 194 186 180
6 7 8 9 10	866 857 768 692 695	352 332 318 289 267	110 105 100 95 90	26 24 23 22 22	15 15 15 15 15	14 14 14 14 14	55 55 50 50 50	1460 1320 1190 1090 1020	257 294 422 430 495	452 450 405 382 468	240 308 285 259 240	164 140 122 110 100
11 12 13 14 15	703 661 661 653 613	255 243 243 241 243	85 80 80 75 73	21 21 20 20 19	15 15 15 15 15	14 14 14 14	100 500 1000 2000 3600	1070 1120 1070 1050 1130	515 472 425 388 365	442 392 335 278 629	212 184 165 147 132	93 88 90 97 92
16 17 18 19 20	572 548 572 578 565	328 400 405 382 338	70 67 64 62 59	19 18 18 17 17	15 15 15 15 15	14 14 14 14 14	3700 3250 2820 2450 2110	1410 1590 1690 1800 1770	328 308 280 247 240	1230 1310 1280 1020 815	122 111 118 204 263	90 97 125 132 132
21 22 23 24 25	542 510 485 458 432	243 250 230 210 195	56 53 50 47 45	17 16 16 16 16	15 15 15 14 14	14 14 14 14 14	1830 1630 1520 1420 1340	1610 1380 1190 1030 892	257 257 229 217 204	709 618 523 520 613	249 348 470 472 440	131 121 110 106 106
26 27 28 29 30 31	402 458 442 458 468	180 170 160 150 140	43 41 39 37 35 33	16 15 15 15 15	14 14 14 	14 15 16 20 25 35	1230 1130 1040 975 914	786 706 626 560 500 452	183 162 148 148 146	550 482 430 405 438 415	410 360 303 251 215 200	99 103 332 809 966
TOTAL MEAN MAX MIN CFSM IN.	18149 585 866 382 1.08 1.24	8611 287 455 140 •53 •59	2319 74.8 135 33 .14 .16	626 20.2 32 15 .04	415 14.8 15 14 .03	475 15.3 35 14 .03	35104 1170 3700 50 2.16 2.40	34351 1108 1800 452 2.04 2.35	9181 306 515 146 •56 •63	16223 523 1310 94 .96 1.11	8317 268 472 111 •49 •57	5503 183 966 88 •34 •38
CAL YR WTR YR					IAX 1940 IAX 3700	MIN 8.3 MIN 14	CFSM CFSM	.37 IN 5				

05140520 LAKE OF THE WOODS AT WARROAD, MN

(International gaging station)

LOCATION.--Lat 48°54'15", long 95°18'57", in SW\sE\forall sec.29, T.163 N., R.36 W., Roseau County, Hydrologic Unit 09030009, on left bank of Warroad River in Warroad, 300 ft (91 m) downstream from Canadian National railroad bridge, 1,000 ft (305 m) downstream from bridge on State Highway 11, and 4,000 ft (1,200 m) upstream from mouth of Warroad River.

DRAINAGE AREA.--27,200 mi² (70,400 km²).

PERIOD OF RECORD. -- April to September 1978 (monthend elevations only), October 1978 to current year. Records collected prior to April 1978 are in reports of the Water Survey of Canada.

GAGE.--Water-stage recorder. Datum of gage is 1,000.00 ft (304.800 m) Lake of the Woods datum; gage readings have been reduced to elevations based on Lake of the Woods datum.

REMARKS.--Runoff conditions of the Warroad River can affect water levels obtained at this station. Water level subject to fluctuation caused by change in direction and velocity of wind and seiches.

COOPERATION. -- This station is one of the International gaging stations maintained by the United States under agreement with Canada.

EXTREMES FOR PERIOD OF RECORD.—Maximum elevation, 1,062.36 ft (323.807 m) Sept. 12, 1978; maximum daily, 1,061.84 ft (323.649 m) Sept. 12, 1978; minimum elevation recorded, 1,055.94 ft (321.851 m) Sept. 4, 1980; minimum daily recorded, 1,056.52 ft (322.027 m) Apr. 15, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,061.36 ft (323.503 m) Aug. 8; maximum daily, 1,060.97 ft (323.384 m) Aug. 1; minimum 1,057.61 ft (322.360 m) Mar. 13; minimum daily, 1057.66 ft (322.375 m) Mar. 13.

ELEVATION, IN FEET LAKE OF THE WOODS DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982 MEAN VALUES

						MEAN VAL	UES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1059.30 1058.95 1058.96 1058.98 1058.95	1058.97 1059.07 1058.96 1058.92 1058.94	1058.95 1058.90 1058.89 1058.83 1058.89	1058.70 1058.72 1058.68 1058.70 1058.67	1058.22 1058.18 1058.17 1058.14 1058.13	1057.75 1057.77 1057.77 1057.74 1057.73	1057.77 1057.83 1057.79 1057.81 1057.80	1059.02 1059.04 1059.02 1059.08 1059.14	1060.33 1060.45 1060.27 1060.28 1060.29	1060.38 1060.37 1060.43 1060.38 1060.46	1060.97 1060.89 1060.84 1060.80 1060.88	1060.38 1060.31 1060.34 1060.24 1060.57
6 7 8 9 10	1058.99 1058.99 1059.08 1058.99 1059.04	1058.97 1058.97 1058.95 1058.66 1058.90	1058.90 1058.84 1058.85 1058.85 1058.87	1058.64 1058.66 1058.62 1058.59 1058.55	1058.11 1058.07 1058.06 1058.04 1058.03	1057.72 1057.74 1057.73 1057.75 1057.73	1057.80 1057.80 1057.79 1057.80 1057.78	1059.00 1059.04 1059.33 1059.47 1059.45	1060.43 1060.28 1060.52 1060.63 1060.39	1060.34 1060.32 1060.31 1060.50 1060.42	1060.91 1060.76 1060.81 1060.95 1060.86	1060.35 1060.18 1060.09 1060.16 1060.28
11 12 13 14 15	1059.09 1059.07 1058.80 1058.96 1059.00	1058.94 1058.84 1058.88 1058.99 1058.98	1058.85 1058.83 1058.82 1058.80 1058.80	1058.57 1058.58 1058.57 1058.55 1058.49	1057.99 1057.99 1057.97 1057.97	1057.73 1057.74 1057.66 1057.73 1057.74	1057.82 1057.84 1057.89 1058.05 1058.13	1059.42 1059.50 1059.55 1059.62 1059.82	1060.48 1060.47 1060.54 1060.60	1060.36 1060.34 1060.44 1060.47 1060.52	1060.78 1060.68 1060.69 1060.73 1060.62	1060.22 1060.31 1060.29 1060.60 1060.21
16 17 18 19 20	1058.91 1059.04 1059.18 1058.90 1059.11	1058.88 1058.95 1059.26 1059.18 1059.02	1058.79 1058.78 1058.79 1058.79 1058.79	1058.48 1058.50 1058.48 1058.43 1058.44	1057.95 1057.93 1057.87 1057.87 1057.83	1057.72 1057.72 1057.72 1057.74 1057.73	1058.27 1058.09 1058.18 1058.23 1058.26	1059.83 1059.79 1059.81 1060.05 1060.11	1060.54 1060.76 1060.58 1060.59 1060.57	1060.55 1060.08 1060.47 1060.58 1060.57	1060.72 1060.69 1060.65 1060.68 1060.65	1060.01 1060.13 1059.93 1060.17 1060.11
21 22 23 24 25	1058.96 1059.03 1058.91 1058.79 1058.90	1058.94 1058.93 1058.89 1058.88 1059.06	1058.77 1058.76 1058.76 1058.76 1058.76	1058.43 1058.43 1058.39 1058.38 1058.36	1057.85 1057.81 1057.82 1057.81 1057.79	1057.68 1057.70 1057.71 1057.69 1057.72	1058.32 1058.38 1058.46 1058.54 1058.65	1060.08 1060.15 1060.16 1060.16 1060.19	1060.63 1060.57 1060.58 1060.58	1060.74 1060.75 1060.66 1060.69 1060.72	1060.60 1060.66 1060.62 1060.54 1060.49	1059.97 1059.94 1060.13 1060.17 1059.87
26 27 28 29 30 31	1058.82 1059.07 1059.16 1059.07 1058.92 1058.83	1059.04 1058.93 1058.79 1058.77 1058.83	1058.76 1058.72 1058.71 1058.70 1058.71 1058.69	1058.37 1058.31 1058.26 1058.28 1058.25 1058.25	1057.79 1057.81 1057.78	1057.73 1057.74 1057.73 1057.75 1057.76 1057.71	1058.71 1058.77 1058.83 1058.87 1058.92	1060.27 1060.29 1060.34 1060.25 1060.35 1060.26	1060.43 1060.48 1060.47 1060.58 1060.42	1060.76 1060.71 1060.70 1060.74 1060.72 1060.68	1060.49 1060.43 1060.47 1060.39 1060.38 1060.38	1059.87 1060.33 1060.28 1059.79 1059.79
MEAN MAX MIN	1058.99 1059.30 1058.79	1058.94 1059.26 1058.66	1058.80 1058.95 1058.69	1058.49 1058.72 1058.25	1057.96 1058.22 1057.78	1057.73 1057.77 1057.66	1058.17 1058.92 1057.77	1059.73 1060.35 1059.00	1060.50 1060.76 1060.27	1060.52 1060.76 1060.08	1060.68 1060.97 1060.38	1060.17 1060.60 1059.79

WTR YR 1982 MEAN 1059.23 MAX 1060.97 MIN 1057.66

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of annual maximum stage and discharge at high-flow stations and the second is a table of discharge measurements made at miscellaneous sites for both low flow and high flow.

HIGH-FLOW PARTIAL-RECORD STATIONS

Figure 7.--Location of high-flow partial-record stations

High-flow partial-record stations

The following table contains annual maximum discharge for high-flow stations. A high-flow partial-record station is equipped with a crest-stage gage, a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Annual maximum discharge at high-flow partial-record stations during water year 1982

					Ann	ual maxi	num
			Drainage	Period		Gage	Dis-
Station No.	Station name	Location	area (mi ²)	of Record	Date	height (feet)	charge (ft ³ /s)
140.			(m1)	necora		(1660)	(10-/5)
		Streams tributary to Lake Su	uperior			,	
04011370	Little Devil Track River near Grand Marais, MN	Lat 47°47'09", long 90°19'44", in NEt NWt sec.9, T.61 N., R.1 E., Cook County, Hydrologic Unit 04010101, at culvert on County Highway 12, 1.6 miles upstream from mouth, and 2.5 miles north of Grand Marais.	7.49	1961-82	4-24-82	17.95	155
04012500	Poplar River at Lutsen, MN	Lat 47°38'23", long 90°42'31", in SW& NE& sec.33, T.60 N., R.3 W., Cook County, Hydrologic Unit 04010101, 350 ft upstream from bridge on U.S. Highway 61 at Lutsen, and 0.3 mile upstream from mouth.	112	1912-17#, 1928-47#, 1952-61#, 1972-82	4-26-82	5.44	1,260
04013200	Caribou River near Little Marais, MN	Lat 47°27'51", long 91°01'50", in NW& SE& sec.36, T.58 N., R.6 W., Lake County, Hydrologic Unit 04010101, at culvert on U.S. Highway 61, 0.2 mile upstream from mouth, and 5.2 miles northeast of Little Marais.	22.7	1961-82	4-24-82	14.05	690
04015200	Encampment River tributary at Silver Creek, MN	Lat 47°07'01", long 91°36'04", in NE; SE; sec.33. T.54 N., R.10 W., Lake County, Hydrologic Unit 04010102, at culvert on County Highway 3, 0.3 mile north of Silver Creek, and 1.4 miles upstream from mouth.	.96	1960-82	5- 5-82	8.48	62
04015250	Silver Creek tributary near Two Harbors,	Lat 47°04'40", long 91°36'49", in SW& NE& sec.16, T.53 N., R.10 W., Lake County, Hydrologic Unit 04010102, at culvert on County Highway 3, 1.0 mile upstream from mouth, and 4.5 miles northeast of Two Harbors.	3.72	1965-82	5- 5-82	6.27	375
04015300	Little Stewart River near Two Harbors, MN	Lat 47°03'52", long 91°40'03", in SEŁ NEŁ sec.24, T.53 N., R.11 W., Lake County, Hydrologic Unit 04010102, at culvert on county highway, 2.0 miles upstream from mouth, and 2.7 miles north of Two Harbors.	5.54	1960-82	5- 5-82	9.94	†
04015370	Talmadge River at Duluth, MN	Lat 46°53'20", long 91°55'21", in SE ¹ 4 NE ¹ 4 sec.2 ¹ 4, T.51 N., R.13 W., St. Louis County, Hydrologic Unit 04010102, at culvert on U.S. Highway 61, 0.6 mile upstream from mouth, and 0.5 mile northeast of Duluth city limits.	5•79	1964-82	4-16-82	14.16	168
04015400	Miller Creek at Duluth, MN	Lat 46°49'01", long 92°10'42", in SEt NEt sec.13, T.50 N., R.15 W., St. Louis County, Hydrologic Unit 04010201, at culvert on U.S. Highway 53, 0.2 mile northwest of Duluth city limits.	4.92	1960-82	5- 4-82	15.18	87

[&]quot;See footnotes at end of the table."

Annual maximum discharge at high-flow partial-record stations during water year 1982

					Ann	ual maxin	num
Station	Station name	Location	Drainage area	Period of	Date	Gage height	Dis- charge
No.			(mi^2)	Record		(feet)	(ft ³ /s)
		Streams tributary to Lake Superio	rContinu	ıed			
04020480	North Branch Whiteface River near Fairbanks, MN	Lat 47°22'20", long 91°56'28", at common corner of secs.35, 36, 1, and 2, along line between T.57 N., and T.56 N., R.13 W., St. Louis County, Hydrologic Unit 04010201, on right downstream wingwall of double box culver on County Highway 16, 2 miles upstre from the mouth of Jenkins Creek, and 0.7 mile west of Fairbanks.	- t	1979-82	4-24-82	12.40	205
04020700	Bug Creek at Shaw, MN	Lat 47°06'40", long 92°21'03", in SWŁ SEŁ sec.34, T.54 N., R.16 W., St. Louis County, Hydrologic Unit 04010201, at left bank on downstream side of culverts on County Road 15 at Shaw, and 7.5 miles upstream from mouth.	24.0	1979-82	7- 4-82	14.40	350
04021205	Floodwood River above Floodwood, MN	Lat 46°17'15", long 92°53'40", in NEANWA sec.32, T.52 N., R.20 W., St. Louis County, Hydrologic Unit 04010201, at bridge on County Highway 835, 500 ft west of State Highwa, 73, and 2 miles north of Floodwood.	198 y	1972-82	4-17-82	(2,000
04024095	Nemadji River near Holyoke, MN	Lat 46°31'04", long 92°23'22", in NE&NE& sec.32, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at bridge on State Highway 23, 3.5 miles north of Holyoke.	118	1972–82	4-15-82	11.26	1,470
04024100	Rock Creek near Blackhoof, MN	Lat 45°32'10", long 92°22'12", in SWA SEA sec.21, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at culvert on State Highway 23, 4.0 miles upstream from mouth, and 4.4 miles east of Blackhoof.	4.94 n	1961-65, 1967-82	3-31-82	a16.72	330
04024110	Rock Creek tributary near Blackhoof, MN	Lat 46°32'14", long 92°22'05", in NELSEL sec.21, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at culvert on State Highway 23, 0.1 mile upstream from mouth and 4.5 miles east of Blackhoof.	.20	1961-82	3-31-82	a12.84	t
04024200	South Fork Nemadji River near Holyoke, MN	Lat 46°29'38", long 92°24'36", in SELSEL sec.6, T.46 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at culvert on State Highway 23, 1.7 miles downstream from Clear Creek, and 2.0 miles northwest of Holyoke.	19.4	1961-82	3-31-82	all.75	440
		Red River of the North ba	sin				
05047700	West Branch Mustinka River tributary near Graceville, MN	Lat 45°36'53", long 96°19'47", in NE&NW& sec.28, T.125 N., R.45 W., Traverse County, Hydrologic Unit 09020102, at culvert on county highway, 6.0 miles northeast of Graceville.	3.37	1964-82	7-21-82	b8.11	39
05049200	Eighteenmile Creek near Wheaton, MN	Lat 45°47'18", long 96°31'52", on west quarter of line between secs.24 and 25, T.127 N., R.47 W., Traverse County, Hydrologic Unit 09020102, at culvert on County Highway 67, 1.4 miles upstream from mouth, and 2.0 miles southwest of Wheaton.	68.5	1965-68, 1970-82	3-30-82	a10.70	320

[&]quot;See footnotes at end of the table."

Annual maximum discharge at high-flow partial-record stations during water year 1982

			Drainage	Period	Ann	ual maxin Gage	num Dis-
Station	Station name	Location	area (mi ²)	of Record	Date	height (feet)	charge (ft ³ /s)
		Red River of the North basin	Continued				
05050700	Rabbit River near Nashua, MN	Lat 46°04'30", long 96°18'24", in SEt NEt sec.15, T.130 N., R.45 W., Wilkin County, Hydrologic Unit 09020101 at right downstream piling of bridge on County Road 19, 2.6 miles north on Nashua, 4.8 miles upstream from mouth of South Fork Rabbit River.	f	1979-82	3-30-82	a13.06	325
05060800	Buffalo River near Callaway, MN	Lat 47°01'17", long 95°54'43", in SWł SEł sec.17, T.141 N., R.41 W., Becket County, Hydrologic Unit 09020106, at culvert on U.S. Highway 59, 2.7 miles north of Callaway.		1960-82	4- 1-82	a16.86	t
05061200	Whiskey Creek at Barnesville, MN	Lat 46°39'35", long 96°23'54", in SEt SWt sec.20, T.137 N., R.45 W., Clay County, Hydrologic Unit 09020106, at culvert on State Highway 34, 0.7 mile upstream from Blue Eagle Lake, and 1.0 mile northeast of Barnesville.	25•3 e	1961-64, 1965-66#, 1967-82	5-17-82	b3.67	40
d05061400	Spring Creek above Downer, MN	Lat 46°44'37", long 96°25'12", in NWł NWł sec.30, T.138 N., R.45 W., Clay County, Hydrologic Unit 09020106, at culvert on county road, 3.1 miles east of Downer.	5.81	1961-82	5-17-82	e7.14	t
05062280	Mosquito Creek near Bagley, MN	Lat 47°27'02", long 95°22'55", in SWłNWł sec.21, T.146 N., R.37 W., Clearwater County, Hydrologic Unit 09020108, at culvert on State Highway 92, 5.0 miles south of Bagley.	3.98	1961-82	4-16-82	ъ10.64	73
05062470	Marsh creek tributary near Mahnomen, MN	Lat 47°19'31", long 96°04'41", in SE&SW& sec.36, T.145 N., R.43 W., Norman County, Hydrologic Unit 09020108, at culvert on State Highway 31, 0.1 mile upstream from mouth, and 5.2 miles west of Mahnomen.	11.9	1961-82	4-15-82	b12.22	99
05062700	Wild Rice River tributary near Twin Valley, MN	Lat 47°17'47", long 96°19'42", in SWtSEt sec.12, T.144 N., R.45 W., Norman County, Hydrologic Unit 09020107, at culvert on State Highway 31, 1.2 miles upstream from mouth, and 4.1 miles northwest of Twin Valley.	4.72	1961-82	4-15-82	11.97	76
05062800	Coon Creek near Twin Valley, MN	Lat 47°15'51", long 96°20'34", in NE&NE& sec.26, T.144 N., R.45 W., Norman County, Hydrologic Unit 09020108, at bridge on County Highway 28, 1.3 miles upstream from mouth, and 4.0 miles west of Twin Valley.	50.8	1962-82	3-31-82	a11.82	410
05063200	Spring Creek tributary near Ogema, MN	Lat 47°07'22", long 95°57'35", in SE4SE4 sec.11, T.142 N., R.42 W., Becker County, Hydrologic Unit 09020108, at culvert on county highway, 2.0 miles northwest of Ogema.	4.99	1963-82	3-30-82	a7.52	51
05063500	South Branch Wild Rice River near Borup, MN	Lat 47°11'40", long 96°34'40", in NW&NW& sec.24, T.143 N., R.47 W., Norman County, Hydrologic Unit 09020108, at bridge on County Highway 193, 3.5 miles upstream from Wild Rice River, and 4.0 miles northwest of Borup.	254	1944-49#, 1972-82	3-31-82	a14.34	t

[&]quot;See footnotes at end of the table."

Annual maximum discharge at high-flow partial-record stations during water year 1982

					Ann	ual maxir	imum	
Station No.	Station name	Location	Drainage area (mi ²)	Period of Record	Date	Gage height (feet)	Dis- charge (ft ³ /s)	
		Red River of the North basin	-Continued					
05073600	South Branch Battle River at Northome, MN	Lat 47°52'17", long 94°17'45", in NWkNE& sec.25, T.151 N., R.29 W., Koochiching County, Hydrologic Unit 09020302, at culvert on U.S. High- 71, 0.7 mile west of Northome, and 3.1 miles upstream from Battle Lake.	2.80	1960-82	4-24-82	15.29	96	
05073750	Spring Creek near Blackduck, MN	Lat 47°46'23", long 94°31'22", in NW&NW& sec.32, T.150 N., R.30 W., Beltrami County, Hydrologic Unit 09020302, at culvert on County Highway 304, 3.1 miles north of Blackdud and 3.2 miles upstream from mouth.		1960-82	4-24-82	15.22	t	
05073800	Perry Creek tributary near Shooks, MN	Lat 47°52'00", long 94°32'52", in NW&SW& sec.30, T.151 N., R.30 W., Beltrami County, Hydrologic Unit 09020302, at culvert on State Highway 72, 5.2 miles west of Shooks.	1.14	1960-82	4-15-82	8.11	70	
05075700	Mud River near Grygla, MN	Lat 48°19'31", long 95°44'35", at common corner of secs.13, 14, 23, and 24, T.156 N., R.40 W., Hydrologic Unit 09020304, Marshall County, at bridge on State Highway 89, 6 miles west of Grygla.	170	1979-82	4-15-82	16.90	800	
05077700	Ruffy Brook near Gonvick, MN	Lat 47°44'50", long 95°24'45", in SE&SE& sec.5, T.149 N., R.37 W., Clearwater County, Hydrologic Unit 09020305, on downstream side of bridge on County Highway 17, 4.0 miles upstream from mouth, and 4.8 miles east of Gonvick.	45.2	1960-78#, 1979-82	4-15-82	4.59	249	
05078180	Silver Creek near Clearbrook, MN	Lat 47°38'43", long 95°26'33", in NW4 sec.13, T.148 N., R.38 W., Clearwate County, Hydrologic unit 09020305, at culvert on county highway, 3.4 miles south of Clearbrook.	;	1960-82	7-21-82	8.60	t	
05078400	Clearwater River tributary near Plummer, MN	Lat 47°52'34", long 96°08'35", in SE4SE4 sec.22, T.151 N., R.43 W., Red Lake County, Hydrologic Unit 09020305, at culvert on county highway, 1.2 miles upstream from mouth, and 5.3 miles southwest of Plummer.	6.51	1961-82	7-16-82	11.80	t	
05086900	Middle River near Newfolden, MN	Lat 48°22'04", long 96°16'47", in NE&NE& sec.3, T.156 N., R.44 W., Marshall County, Hydrologic Unit 09020309, at bridge on township road 2.0 miles northeast of Newfolden.	91.1	1979-82	4-15-82	15.29	270	
05094000	South Branch Two Rivers at Lake Bronson, MN	Lat 48°43'50", long 96°39'50", in SW&SW& sec.30, T.161 N., R.46 W., Kittson County, Hydrologic Unit 09020312, 70 ft upstream from culvert on U.S. Highway 59 at town of Lake Bronson, and 3.4 miles downstream from dam at outlet of Bronson Lake.	444	1929-36#, 1937#, 1941-47#, 1954-81#, 1982	4- 2-82	7.94	1,040	
		Lake of the Woods bas:	in					
05129650	Little Fork River at Cook, MN	Lat 47°51'15", long 92°41'55", in SE&NE& sec.13, T.62 N., R.19 W., St. Louis County, Hydrologic Unit 09030005, at bridge on U.S. Highway 53, 0.6 mile west of Cook.	61.5	1968–82	4-19-82	16.00	463	

[&]quot;See footnotes at end of the table."

Annual maximum discharge at high-flow partial-record stations during water year 1982

					Annual maximum				
			Drainage	Period		Gage	Dis-		
Station	Station name	Location	area	$\circ f$	Date	height	charge		
No.			(mi ²)	Record		(feet)	(ft ³ /s)		
		Lake of the Woods basinCo	ntinued						
05130300	Boriin Creek near Chisholm, MN	Lat 47°36'14", long 92°51'58", in SE4SE4 sec.9, T.59 N., R.20 W., St. Louis County, Hydrologic Unit 09030005, at culvert on State Highwa 73, 1.3 miles upstream from mouth, and 7.8 miles north of Chisholm.	13.7 ay	1959-82	4-18-82	12.64	260		
05131750	Big Fork River near Bigfork, MN	Lat 47°44'56", long 93°46'31", in SWANEA sec.27, T.61 N., R.27 W., Itasca County, Hydrologic Unit 09030006, at bridge on State Highway 6, 5.5 miles west of Bigfork.	602	1973-82	5-18-82	13.39	1,810		
05131878	Bowerman Brook near Craigville, MN	Lat 47°55'29", long 93°45'34", in NEANWA sec.26, T.63 N., R.27 W., Koochiching County, Hydrologic Unit 09030006, on left downstream wingwall of bridge on State Highway 6, 2.4 miles upstream from mouth, and 7.0 miles west of Craigville.	25.0	1979-82	4-20-82	14.53	580		
05132000	Big Fork River at Big Falls, MN	Lat 48°11'45", long 93°48'25", in SWtSEt sec.35, T.155 N., R.25 W., Koochiching County, Hydrologic Unit 09030006, on left bank at village of Big Falls, 700 ft downstream from falls, 0.3 mile downstream from bric on U.S. Highway 71, and 4.8 miles up stream from Sturgeon River.	lge	1929-79#, 1980-82	4-20-82	15.00	12,300		
05140000	Bulldog Run near Warroad, MN	Lat 48°51'30", long 95°20'18", in SW\u00e4SE\u00e4 sec.7, T.162 N., R.36 W., Roseau County, Hydrologic Unit 09030009, 10 ft (revised) downstream from culvert on county highway, 0.8 mile upstream from mouth, and 2.5 miles south of Warroad.	11.1	1946-51#, 1966-77#, 1978-82	4-14-82	6.90	265		
05140500	East Branch Warroad River near Warroad, MN	Lat 48°51'29", long 95°18'40", in NEŁ NEŁ sec.17, T.162 N., R.36 W., Roses County, Hydrolgoic Unit 09030009, at upstream side of highway bridge, 3.5 miles upstream from mouth, and 2.5 miles south of Warroad.	t	1946-54#, 19 66- 77#, 1978-82	4-17-82	8,67	546		
t Disch a Backw b Affec c Estim d Name	ted as a continuous- arge not determined. ater from ice. ted by shifting cont ated; gage height un revised. ater from debris.	crol.							

Discharge measurements at miscellaneous sites

Measurements of streamflow at points other than gaging stations are given in the following table. The measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (†).

Discharge measurements made at miscellaneous sites during water year 1982

			Drainage	Measured previously	Measu	rements
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		Red River of the North basin				
Wild Rice River	Red River of the North	Lat 47°17'29", long 96°26'09", on line between sec.13, T.144 N., R.46 W., and sec.18, T.144 N., R.45 W., Norman County, Hydrologic Unit 09020108, at bridge on County Highway 24, 3.2 miles southeast of Ada, MN (05062900).	-	1945-51, 1965-73, 1975-76, 1978-79	3-31-82	2,100
Snake River	Red River of the North	Lat 48°11'50", long 96°46'45", in SE4 sec.36, T.155 N., R.48 W., Marshall County, Hydrologic Unit 09020309, at bridge on Minnesota Street in Warren, MN (05085500).	175	1945#, 1946-49, 1953-56#, 1970-72, 1974-76, 1978-79	4- 1-82 4-13-82	
Roseau River	Red River of the North	Lat 48°53'28", long 95°43'50", in SW\u00e4SE\u00e4 sec.31, T.163 N., R.39 W., Roseau County, Hydrologic Unit 09020314, at bridge on County Highway 28, 900 feet downstream from Hay Creek, and 3.2 miles northeast of Roseau, MN (05105300).	-	1973-80	11- 2-81 12-14-81 1-25-82 3-22-82 5-25-82 7-12-82 8-31-82	*25 *6.1 *9.5 270 125
		Lake of the Woods basin				
Vermilion River	Crane Lake	Lat 47°57'41", long 92°28'33", in SERSWA sec.2, T.63 N., R.17 W., St. Louis County, Hydrologic Unit 09030002, on left bank 200 ft downstream from dam at outlet of of Vermilion Lake, 4.4 miles upstream from Two Mile Creek, and 14.2 miles northwest of Tower, MN (05129000).	483	1911-17#, 1928-81#	10-19-81	224
Gold Portage outlet from Kabetogama Lake	Rainy River	Lat 48°31'56", long 93°05'14", in SW&SW& sec.19, T.70 N., R.21 W., St. Louis County, Hydrologic Unit 09030003, 10 miles northeast of Ray, MN (05129290).	<u>.</u>	1981	11- 3-81 5-10-82 5-13-82 5-25-82 6- 9-82 7-22-82 7-29-82 8-19-82 9-17-82	9.1 34 322 397 554 608 547

[#] Operated as a continuous-record gaging station.

17...

95

27

Water-quality partial-record stations are particular sites where chemical-quality, biolobical and (or) sediment data are collected systematically over a period of years for use in hydrologic analyses.

482018092292001 MUKOODA LAKE NEAR CRANE LAKE, MN

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY 20 AUG	0930		73	55	61	7.6	7.6	11.0	<1	2.90	10.8
17	1045	14.0	73	57	62	8.5	7.8	21.4	12	4.5	8.1
	OXYGEN,							,			SOLIDS,
DATE	DIS- SOLVED (PER- CENT SATUR-	HARD- NESS (MG/L AS	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L	BICAR- BONATE IT-FLD (MG/L AS	CAR- BONATE IT-FLD (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	RESIDUÉ AT 180 DEG. C DIS- SOLVED
DATE	ATION) (00301)	CACO3) (00900)	AS CA) (00915)	AS MG) (00925)	AS NA) (00930)	AS K) (00935)	HCO3) (99440)	CO3) (99445)	AS SO4) (00945)	AS CL) (00940)	(MG/L) (70300)
MAY 20	100	28	6.1	3.0	1.3	.7	33		2.0	•3	38
AUG	0.5			- 0		,		1		_	

DATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 20 AUG	•05	2	<.01	•52	.016	<.001	6	<1	3.30	•500
17	.06	<1	<.01	•50	.010	<.001	6	<1	1.90	<.100

1.2

.6 26

4.0

2.0

44

•5

6.1

2.8

482018092292001 MUKOODA LAKE NEAR CRANE LAKE, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME		20,82 930		17,82 045
TOTAL CELLS/ML	5	400	3	100
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		1.3 1.3 2.5 2.5 2.8		0.7 0.7 1.8 1.8
OGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEEUPODISCALESCOSCINODISCACEAECYCLOTELLAMELOSIRA	870# 330	16 6	<u></u>	_
FRAGILARIALES FRAGILARIACEAE SYNEDRA	1500#	27	*	0
NAVICULALESGOMPHONEMACEAEGOMPHONEMA		_	87	3
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESDICTYOSPHAERIACEAE				
DICTYOSPHAERIUM	83	2		-
OOCYSTACEAEANKISTRODESMUSOOCYSTISSCENEDESMACEAE	350 	6 -	29 72	1 2
GLOEOACTINIUM		-	160	5
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE				
ANACYSTISNOSTOCALESNOSTOCACEAE	1200#	21	160	5
ANABAENA		-	1700#	54
APHANIZOMENONCYLINDROSPERMUM .OSCILLATORIALES	330 410	6 8		-
OSCILLATORIACEAELYNGBYAOSCILLATORIA	410	- 8	870# 	28 -
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE				
TRACHELOMONAS	*	0	29	1

482226092283301 SANDPOINT LAKE BELOW HARRISON NARROWS NEAR CRANE LAKE, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY 18	0940		14	44	48	6.9	7.2	13.4	1.80	9.6
AUG 17	1015	8.00	12	54	60	7.7	7.9	22.0	2.60	7.9
								1 1		
DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 18	96	16	46	.06	.07	.58	.026	.006	4.40	<.100
AUG										

482226092283301 SANDPOINT LAKE BELOW HARRISON NARROWS NEAR CRANE LAKE, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE		18,82		17,82
TIME TOTAL CELLS/ML		940 990		015 500
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		1.8 1.8 2.6 3.0 3.3		0.9 0.9 1.9 2.0 2.5
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .BACILLARIALESNITZSCHIACEAENITZSCHIACEAE	70	7		_
EUPODISCALES COSCINODISCACEAE				
CYCLOTELLAMELOSIRASTEPHANODISCUS .FRAGILARIALESFRAGILARIACEAE	42 99 	10 -	28 69	1 2
ASTERIONELLA		-	97	3
DIATOMASYNEDRATABELLARIA	56 28 	6 3 -	 41	- 1
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESMICRACTINIACEAE				
MICRACTINIUM OOCYSTACEAE	56	6		-
ANKISTRODESMUSOOCYSTIS	56 	6 -	* 120	0 4
SPHAEROCYSTIS	56	6	110	3
SCENEDESMACEAESCENEDESMUSTETRASPORALES	56	6	28	1
GLOEOCYSTACEAEGLOEOCYSTISVOLVOCALES		-	41	1
CHLAMYDOMONADACEAE CHLAMYDOMONAS	99	10	*	0
CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALESSYNURACEAEMALLOMONAS		_		0
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALESCHROOCOCCACEAE				
AGMENELLUMANACYSTISNOSTOCALES	 310#	31	840# 830#	
ANABAENA		-	1200#	35
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALES .EUGLENACEAE .EUGLENA	14	1	*	0
TRACHELOMONAS PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .DINOKONTAE	42	4		-
GLENODINIACEAE		_	*	0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

482239092491101 ASH RIVER AT ASH RIVER FALLS NEAR RAY, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	STREAM- FLOW, INSTAN- TANEOUS (CFS) (00061)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	
AUG 16	1300	3.30	2.9	207	211	8.2	7.9	23.5	7.9	96	134	

DATE	SULFIDE TOTAL (MG/L AS S) (00745)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
AUG 16	< . 5	1	<.01	.030	.37	.40	.053	.032	.900	<.100

482308092483301 ASH RIVER ABOVE MOUTH OF CANNON CREEK NEAR RAY, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
AUG 16	1400	2.60	209	212	8.8	7.8	22.0	.90	10.5	125
DATE	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	CAR- BONATE IT-FLD (MG/L AS CO3) (99445)	SULFIDE TOTAL (MG/L AS S) (00745)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS-PHORUS, TOTAL (MG/L AS P) (00665)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
AUG 16	112	13	< . 5	2	.040	.46	•50	.042	14.0	<.100

482347092494401 ASH RIVER BELOW MOUTH OF CANNON CREEK NEAR RAY, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	CAR- BONATE IT-FLD (MG/L AS CO3) (99445)
AUG 16	1415	11.5	213	8.7	8.0	20.5	•90	6.5	7 5	111	10

DATE	SULFIDE TOTAL (MG/L AS S) (00745)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
AUG 16	< . 5	3	<.01	.040	1.2	1.20	.037	.002	7.80	<.100

482451092471001 ASH RIVER AT ENTRANCE TO SULLIVAN BAY NEAR RAY, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)
MAY								
17	1730		6	150	149	7.4	7.6	15.1
AUG		- 0-	_					a
16	1515	2.80	7	158	169	9.4	8.2	24.0

DATE	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	CAR- BONATE IT-FLD (MG/L AS CO3) (99445)	SULFIDE TOTAL (MG/L AS S) (00745)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)
MAY 17 AUG	1.00	12.3	127	86			115	.16	
16	•90	11.9	146	38	30	<.5	123	.17	3

DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 17	.13			.63	.035	•023	2.60	<.100
AUG 16	<.01	.010	.89	• .90	.046	.007	9.50	<.100

DATE

ANALYSIS OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 482451092471001 ASH RIVER AT ENTRANCE TO SULLIVAN BAY NEAR RAY, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

MAY 17,82 1730 AUG 16,82 1515

TIME 430000 1500 TOTAL CELLS/ML 0.6 0.1 DIVERSITY: DIVISION 0.1 .CLASS 0.6 ..ORDER 1.7 0.7 ... FAMILYGENUS

PER-CELLS PER-CELLS /ML CENT ORGANISM /ML BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .. ACHNANTHALES ...ACHNANTHACEAE 28 2ACHNANTHESCOCCONEIS ..BACILLARIALES ...NITZSCHIACEAENITZSCHIA 1000# 69 .. EUNOTIALES ... EUNOTIACEAEEUNOTIA .. EUPODISCALES ... COSCINODISCACEAE 42 3 0CYCLOTELLAMELOSIRA 56STEPHANODISCUS .. FRAGILARIALES ...FRAGILARIACEAEASTERIONELLADIATOMAFRAGILARIA 130SYNEDRA .. NAVICULALES ... GOMPHONEMACEAEGOMPHONEMA ...NAVICULACEAE 56NAVICULA CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .. CHLOROCOCCALES ... CHLOROCOCCACEAESCHROEDERIA ٥TETRAEDRON ...COCCOMYXACEAE ...ELAKATOTHRIX ...DICTYOSPHAERIACEAEDICTYOSPHAERIUM ...OOCYSTACEAEANKISTRODESMUS 14 1ECHINOSPHAERELLAOOCYSTIS × 0SELENASTRUMTREUBARIA ...PALMELLACEAESPHAEROCYSTIS ... SCENEDESMACEAEACTINASTRUM ... CRUCIGENIASCENEDESMUS .. VOLVOCALES ... CHLAMYDOMONADACEAECARTERIA ...CHLAMYDOMONAS 28 2 0 0 ...PANDORINA CHRYSOPHYTA .CHRYSOPHYCEAE ..OCHROMONADALES ...DINOBRYACEAEDINOBRYON CRYPTOPHYTA (CRYPTOMONADS)
• CRYPTOPHYCEAE .. CRYPTOMONADALES ... CRYPTOCHRYSIDACEAE CHROOMONAS ... CRYPTOMONADACEAE

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

.... CRYPTOMONAS

•5

.4

2.0

3.0

7.0

42

48

482459092320101 O'LEARY LAKE NEAR CRANE LAKE, MN

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY 20	1030		52	62	68	7.4	7.4	12.7	5	3.00	11.0
AUG 17	0940	8.70	36	70	71	9.2	7.8	21.2	16	2.80	11.8
	OVVACEN										got tog
DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	CAR- BONATE IT-FLD (MG/L AS CO3) (99445)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)

1.3

1.2

.8

.8

34

21

MAY 20... AUG 17...

106

138

32

31

7.4

7.4

3.3

3.0

, D ATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 20	.06	1	<.01	.50	.031	<.001	15	1	6.50	<.100
AUG 17	.07	<1	<.01	.30	-013	<.001	8	<1	4.90	<.100

482459092320101 O'LEARY LAKE NEAR CRANE LAKE, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME	MAY 20,82 1030	AUG 17,82
TOTAL CELLS/ML	140000	94000
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS	0.0 0.0 0.2 0.2	0.0 0.0 0.2 0.2 0.7
ORGANISM	CELLS PER- /ML CENT	
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .NAVICULALESNAVICULACEAENAVICULA CHLOROPHYTA (GREEN ALGAE)	* 0	
.CHLOROPHYCEAE .VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS .ZYGNEMATALESDESMIDIACEAESPONDYLOSIUM		* 0
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCACEAECHROOCOCCACEAEANACYSTISGOMPHOSPHAERIA .NOSTOCALESNOSTOCACEAE	140000# 98	 1700 2
ANABAENAAPHANIZOMENON .OSCILLATORIALESOSCILLATORIACEAE	2600 2	8300 9 83000# 88
EUGLENOPHYTA (EUGLENOIDS) EUGLENOPHYCEAE EUGLENALES EUGLENACEAE TRACHELOMONAS	* 0	920 1

482545092495401 KABETOGAMA LAKE AT SULLIVAN BAY OUTLET NEAR RAY, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	
MAY 17	1710		18	140	139	7.5	7.6	15.3	1.10	8.7	90	
AUG 18	1145	3.00	16	132	110	9.7	8.6	22.0	.90	10.4	123	

DATE	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	CAR- BONATE IT-FLD (MG/L AS CO3) (99445)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 17 AUG	80		103	.14	.06	.72	.033	.007	6.30	<.100
18	42	13	82	.11	<.01	.80	.048	.003	5.20	<.100

482545092495401 KABETOGAMA LAKE AT SULLIVAN BAY OUTLET NEAR RAY, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME		17,82 1710	AUG	18,82 .145
TOTAL CELLS/ML		2200		0000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		1.4 1.4 2.5 3.0 3.4	- 1	0.2 0.2 1.5 1.5
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEBACILLARIALESNITZSCHIACEAENITZSCHIAEUPODISCALES	390#	18		-
COSCINODISCACEAECYCLOTELLAMELOSIRAFRAGILARIALES	130 520#	6 23	3400	0 2
FRAGILARIACEAE MERIDION SYNEDRA	14 70	1 3		- 0
NAYICULALESCYMBELLACEAECYMBELLAGOMPHONEMACEAE	14	1		-
GOMPHONEMA NAVICULACEAE	42	2		-
NAVICULA CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESCHLOROCOCCACEAESCHROEDERIA	56	3	*	0
TETRAEDRONDICTYOSPHAERIACEAEDICTYOSPHAERIUM	 380#	- 17	*	ŏ -
OOCYSTACEAE ANKISTRODESMUS KIRCHNERIELLA	56 28	3 1		-
SCENEDESMACEAECRUCIGENIASCENEDESMUSVOLVOCALES	56 200	3 9	*	<u></u>
CHLAMYDOMONADACEAECHLAMYDOMONAS CHRYSOPHYTA	98	4	*	0
.CHRYSOPHYCEAE OCHROMONADALES OCHROMONADACEAE	56	2		
OCHROMONAS SYNURACEAE MALLOMONAS	56 42	3 2	*	0
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE				
ANACYSTISGOMPHOSPHAERIA .NOSTOCALES .NOSTOCACEAE	84 	-	9600	- 6
ANABAENA APHANIZOMENON OSCILLATORIALES		_	21000 57000#	13 34
OSCILLATORIACEAE OSCILLATORIA		-	73000#	44
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAE				
TRACHELOMONAS		-	*	0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% # - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

482607092511701 KABETOGAMA LAKE AT MOUTH OF MEADWOOD BAY NEAR RAY, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
MAY 17 AUG	1640		37	94	98	7.3	7.5	11.0	1.60	10.2	96
18	1115	3.60	39	74	63	9.6	8.2	22.3	1.10	11.2	133

DATE	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	CAR- BONATE IT-FLD (MG/L AS CO3) (99445)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 17 AUG 18	54 19	 10	68 54	.09 .07	•15 	•73 •60	.029	•005 	5.60 9.50	<.100 <.100

482607092511701 KABETOGAMA LAKE AT MOUTH OF MEADWOOD BAY NEAR RAY, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME	MA	7 17,82 1640	2 AUG	18,82 1115
TOTAL CELLS/ML		3900	23	80000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.4 0.4 1.3 1.3	, , ,	0.0 0.0 0.7 0.7 1.4
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEBACILLARIALESNITZSCHIACEAENITZSCHIADUPODISCALES	140	4		-
COSCINODISCACEAECYCLOTELLASTEPHANODISCUS .FRAGILARIALES	2700# 	70 -	 *	ō
FRAGILARIACEAEDIATOMAFRAGILARIASYNEDRA	390 200 220	10 5 6	 	-
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALES .OOCYSTACEAEANKISTRODESMUS .VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS	28 84	1 2	 *	- 0
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAEANACYSTIS .NOSTOCALES	56	1	41000#	18
NOSTOCACEAEANABAENAAPHANIZOMENON .OSCILLATORIALES		-	130000# 54000#	58 24
OSCILLATORIACEAE OSCILLATORIA		-	*	0
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAEPERIDINIUM	28	1		-

482616092372201 NAMAKAN LAKE NEAR RAY, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY 17	1230		67	46	52	6.9	7.3	8.0	2.70	
AUG 18	1230	8.20	80	41	45	7.6	7.8	21.5	2.50	7.8
	OWATN									
DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 17 AUG		18	41	.06	.12	.61	.018	.007	5.60	<.100
18	91	16	38	•05	•07	<.10	.012	.001	1.00	<.100

482616092372201 NAMAKAN LAKE NEAR RAY, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME	MAY 17,82 1230	AUG 18,82 1230
TOTAL CELLS/ML	1500	1500
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS	0.8 0.8 1.4 1.5	1.2 1.2 1.2 1.3 1.6
ORGANISM	CELLS PER- /ML CENT	CELLS PER- /ML CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .ACHNANTHALES .ACHNANTHACEAEACHNANTHES	14 1	
COSCINODISCACEAE		
CYCLOTELLA FRAGILARIALES FRAGILARIACEAE	140 10	
DIATOMA FRAGILARIA	1000# 69	1000# 66
HANNAEA SYNEDRA NAVICULALES	14 1 29 2	~
CYMBELLACEAE CYMBELLA NAVICULACEAE	14 1	
NAVICULA	14 1	~
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAE		
SCHROEDERIA DICTYOSPHAERIACEAE	14 1	29 2
OICTYOS PHAERIUM OOCYSTACEAE	58 4	
OOCYSTIS CHRYSOPHYTA	-	58 4
.CHRYSOPHYCEAEOCHROMONADALESSYNURACEAE	1 1	
MALLOMONAS CYANOPHYTA (BLUE-GREEN ALGAE)		29 2
.CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAEAGMENELLUMANACYSTIS	 	230# 15 170 11
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALES		21.
EUGLENACEAE TRACHELOMONAS	14 1	
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .DINOKONTAE		
PERIDINIACEAE PERIDINIUM	130 9	

482709092264601 NAMAKAN LAKE AT MOUTH OF NAMAKAN RIVER, ONTARIO

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY 18 AUG	1040		16	35	41	7.0	7.4	11.2	2.40	11.1
17	1100	9.40	27	43	43	7.6	7.8	22.0	3.00	8.8

DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	BICAR-BONATE IT-FLD (MG/L AS HCO3)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER AC-FT)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)
MAY	(00301)	(99440)	(70300)	(70303)	(00631)	(00625)	(00665)	(00666)	(70953)	(70954)
18 AUG	106	15	36	•05	•05	• 47	.018	.017	4.40	<.100
17	104	14	50	.07	.13	<.10	.012	.003	1.10	<.100

482709092264601 NAMAKAN LAKE AT MOUTH OF NAMAKAN RIVER, ONTARIO--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME	MAY 18,82 1040	AUG 17,82 1100
TOTAL CELLS/ML	1100	240
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS	0.7 0.7 1.6 1.6 2.2	1.0 1.0 1.2 2.1
ORGANISM	CELLS PER- /ML CENT	CELLS PER-
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .EUPODISCALESCOSCINODISCACEAECYCLOTELLAMELOSIRASTEPHANODISCUS .FRAGILARIALES	220# 20 	72# 29 14 6
FRAGILARIACEAEASTERIONELLAFRAGILARIASYNEDRATABELLARIA .NAVICULALES .NAVICULACEAE	130 12 530# 50 43 4 	 14 6
CHLOROPHYTA (GREEN ALGAE) CHLOROPHYCEAE CHLOROCOCCALES CHLOROCOCCACEAE	14 1	
SCHROEDERIADICTYOSPHAERIACEAEDICTYOSPHAERIUM		29 12 58# 24
OOCYSTACEAEANKISTRODESMUSOOCYSTIS .VOLVOCALESCHLAMYDOMONADACEAE	43 4	 58# 24
CHLAMYDOMONAS	29 3	
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAEEUGLENA	29 3	· -
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAEPERIDINIUM	29 3	1

482721093003901 KABETOGAMA LAKE NEAR RAY, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
MAY 17 AUG	1515	स्त्रमं स्त्रमं	34	85	90	7.5	7.7	10.3	2.00	12.0	110
18	0915	3.00	32	89	79	9.6	8.4	21.6	•90	11.0	131

DATE	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	CAR- BONATE IT-FLD (MG/L AS CO3) (99445)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS-PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 17 AUG 18	48 19	 15	62 62	.08	.03 <.01	.87 .80	.045	.008	13.0 42.0	<.100 <.100

482721093003901 KABETOGAMA LAKE NEAR RAY, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME	MAY 1	17,82 515	AUG 1	18,82 915
TOTAL CELLS/ML	7	800	2700	000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.3 0.3 0.9 0.9	(0.0 0.8 0.8
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .ACHNANTHALES .ACHNANTHACEAE .ACHNANTHES	72	1	-+ '	_
EUPODISCALESCOSCINODISCACEAE			1:	
CYCLOTELLA	6100# 650	79 8	-+	-
MELOSIRA FRAGILARIALES	050	O		_
FRAGILARIACEAESYNEDRANAVICULALES	430	6		-
NAVICULACEAENAVICULA	220	3		_
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS	72	1		_
CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALESDINOBRYACEAEDINOBRYON CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE	72	1		-
CHROOCOCCALESCHROOCOCCACEAEANACYSTIS		_	60000#	22
. NOSTOCALES . NOSTOCACEAE ANABAENA APHANIZOMENON		<u>-</u>	28000 180000#	10 68
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAETRACHELOMONAS	72	1	-	_
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAE			1	
PERIDINIAGEAE	72	1		-

482747092503001 KABETOGAMA LAKE IN LOST BAY NEAR RAY, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
MAY 17	1600		35	78	85	7.2	7.6	10.5	2.10		
AUG 18	1030	3.00	37	89	75	9.9	8.9	23.3	1.00	12.0	145

DATE	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	CAR- BONATE IT-FLD (MG/L AS CO3) (99445)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 17 AUG	42		57	.08	.04	•53	.029	.023	8.70	<.100
18	25	11	61	.08	<.01	•90	.037	.004	17.0	<.100

482747092503001 KABETOGAMA LAKE IN LOST BAY NEAR RAY, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME		17,82 500	AUG 1	18,82 030
TOTAL CELLS/ML	5	200	1300	000
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.7 0.7 1.5 1.6	((, ' (0.0 0.0 0.9 0.9
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) BACILLARIOPHYCEAEBACILLARIALESNITZSCHIACEAENITZSCHIA	96	2		_
EUPODISCALES COSCINODISCACEAE				
CYCLOTELLA	3400#	66 6		-
MELOSIRASTEPHANODISCUSFRAGILARIALESFRAGILARIACEAE	340 	-	*	0
SYNEDRA NAVICULALES	380	7		-
GOMPHONEMACEAEGOMPHONEMA	48	1		-
NAVICULACEAE NAVICULA SURIRELLALES	240	5		-
SURIRELLACEAE CYMATOPLEURA	48	1		-
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAE				
SCHROEDERIA	290	6		
OOCYSTACEAE ANKISTRODESMUS	96	2		-
CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALESDINOBRYACEAE				
DINOBRYON	48	1		-
SYNURACEAE MALLOMONAS		_	*	0
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE			1	
GOMPHOSPHAERIA .NOSTOCALES NOSTOCACEAE		-	35000#	27
ANABAENA APHANIZOMENON	190	4 -	64000# 31000#	49 24

482951092531601 SHOEPACK LAKE NEAR INTERNATIONAL FALLS, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY 19	1500		22	22	28	6.0	6.5	14.5	70	1.70	9.1
AUG 17	1430	4.70	21	20	28	6.6	6.9	22.2	80	1.50	9.9

DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
MAY 19 AUG	93	10	2.3	1.1	1.1	•7	6.0	4.0	1.1	48
17	119	10	2.3	1.0	1.0	. 4	5.0	4.0	1.0	46

DATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 19 AUG	.07	2	.14	.69	.021	.011	230	40	4.70	.700
17	.06	2	.02	.70	.014	.001	410	24	2.20	<.100

482951092531601 SHOEPACK LAKE NEAR INTERNATIONAL FALLS, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME		19,82 500		17,82 430
TOTAL CELLS/ML	16	000	5	600
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.3 0.3 0.3 0.3	1	1.2 1.2 1.2 1.7 2.5
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEEUNOTIALESEUNOTIACEAEEUNOTIA	*	0		<u></u>
EUPODISCALESCOSCINODISCACEAECYCLOTELLAFRAGILARIALES	*	0	58	1
FRAGILARIACEAEASTERIONELLASYNEDRATABELLARIA	 * 	0	58 58	1 - 1
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAE				
TETRAEDRON OOCYSTACEAE	*	0		-
ANKISTRODESMUSKIRCHMERIELLAQUADRIGULASELENASTRUM	82 	1 -	72 680 58 230	1 12 1 4
PALMELLACEAESPHAEROCYSTIS		_	660	12
SCENEDESMACEAE CRUCIGENIA		-	170	3
. VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONASZYGNEMATALES	250	2		_
DESMIDIACEAECOSMARIUMSTAURASTRUM		-	29 29	1 1
CHRYSOPHYTA .XANTHOPHYCEAEMISCHOCOCCALES			1	
SCIADACEAECENTRITRACTUS CRYPTOPHYTA (CRYPTOMONADS)	*	0		
.CRYPTOPHYCEAE CRYPTOMONADALES CRYPTOCHRYSIDACEAE	*	0		
CHROOMONASCRYPTOMONADACEAECRYPTOMONAS	*	0		_
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALES				
CHROOCOCCACEAEAGMENELLUMANACYSTISGOMPHOSPHAERIA	82 15000# 	1 96 -	230 330 2900#	4 6 # 52
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAE				
TRACHELOMONAS			29	1

482958092484501 CRUISER LAKE NEAR INTERNATIONAL FALLS, MN

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY 19	1350		89	19	24	6.3	7.0	10.8	<1	5.0	10.8
AUG 17	1315	25.0	90	18	31	6.8	7.2	15.2	9	8.0	12.1

DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
MAY 19 AUG	103	9	2.2	.8	.8	•5	8.0	2.0	.2	17
17	125	8	2.1	•7	• 7	•3	8.0	3.0	.6	16

DATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 19 AUG 17	.02	2 <1	.01 <.01	•34 •50	.008 .008	<.001 .002	10 3	2	2.30 <.100	<.100 <.100

الو

ANALYSIS OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

482958092484501 CRUISER LAKE NEAR INTERNATIONAL FALLS, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME		19,82 350		17,82 315
TOTAL CELLS/ML	5	700	2	300
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS	1	0.6 0.6 0.8 0.8		0.6 0.6 1.3 1.3
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .EUPODISCALESCOSCINODISCACEAECYCLOTELLA	150	3	14	1
FRAGILARIALES FRAGILARIACEAE				
ASTERIONELLA	140	2	120	5
SYNEDRA TABELLARIA		0	220	9
RHIZOSOLENIALES RHIZOSOLENIACEAE				
RHIZOSOLENIA	*	0		-
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESOOCYSTACEAEANKISTRODESMUSCLOSTERIOPSIS	83 *	1 0	<u></u>	Ξ
CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALES .OCHROMONADACEAE .OCHROMONAS .XANTHOPHYCEAE .MISCHOCOCCALES .SCIADACEAE .CENTRITRACTUS	*	0		-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE				1
ANACYSTISGOMPHOSPHAERIANOSTOCALESNOSTOCACEAE	5000# 	88	1400#	63
ANABAENAOSCILLATORIALESOSCILLATORIACEAE		-	490#	22
OSCILLATORIA	140	2		-
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAETRACHELOMONAS PYRRHOPHYTA (FIRE ALGAE)	55	1		_
.DINOPHYCEAEDINOKONTAEPERIDINIACEAEPERIDINIUM	*	0		: -

483000092392601 Namakan lake above kettle falls near international falls, mn

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY 17	1400		56	48	51	7,2	7.4	7.6	2.60	13.0
AUG 18	1315	11.8	100	41	44	7.5	7.4	20.1	3.6	7.4
	OXYGEN,		SOLIDS,		NITRO-	NITRO-			CHLOR-A	CHLOR-B
DATE	DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 17	113	20	42	.06	.12	.50	.016	.001	5.10	<.100
AUG 18	84		40	.05	.04	.30	.008	.002	•300	<.100

483000092392601 NAMAKAN LAKE ABOVE KETTLE FALLS NEAR INTERNATIONAL FALLS, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME		17,82 400		18,82 315
TOTAL CELLS/ML	2	200,	3	500
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS		0.6 0.6 1.1 1.2 2.0		0.6 0.6 1.3 1.3
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE .EUPODISCALESCOSCINODISCACEAECYCLOTELLAMELOSIRASTEPHANODISCUS .FRAGILARIALESFRAGILARIACEAEFRAGILARIA	750# 1000# 		* 55 *	0 2 0
HANNAEA	29	1	220	6
TABELLARIA .NAVICULALESNAVICULACEAENAVICULA	14	1	220	-
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAE .CHLOROCOCCALESCHLOROCOCCACEAESCHROEDERIAMICRACTINIACEAEMICRACTINIUMOOCYSTACEAE	14 43	1 2	<u></u>	-
ANKISTRODESMUS OOCYSTIS	14	1 -	41	1
CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALESOCHROMONADACEAEOCHROMONASSYNURACEAEMALLOMONAS	 58	- 3	28	1 -
CRYPTOPHYTA (CRYPTOMONADS) .CRYPTOPHYCEAECRYPTOMONADALESCRYPTOMONADACEAECRYPTOMONAS			*	0
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE AGMENTILIUM			390	11
AGMENELLUM ANACYSTIS		-	690#	20
GOMPHOSPHAERIANOSTOCALESNOSTOCACEAEANABAENA		-	1500# 500	14
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAE .EUGLENALESEUGLENACEAETRACHELOMONAS	14	1		
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAEPERIDINIUM	72	3		-

483103092482501 OSLO LAKE NEAR INTERNATIONAL FALLS, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY 20	1130		33	19	24	6.5	6.7	14.2	20	2.40	9.7
AUG 17	1145	9.40	35	19	37	6.9	6.9	20.4	42	3.00	8.8

DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
MAY 20 AUG 17	97 101	9	2.1 2.1	1.0	1.1	.6 .4	8.0 8.0	3.0 3.0	1.0	30 32

DATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 20 AUG	.04	3	.10	.94	.017	.007	91	3	6.00	<.100
17	.04	1	<.01	•50	.008	<.001	210	100	1.00	<.100

483103092482501 OSLO LAKE NEAR INTERNATIONAL FALLS, MN--Continued

PHYTOPLANKTON ANALYSES.	YAM	1982	TO	AUGUST	1982
-------------------------	-----	------	----	--------	------

DATE TIME	MAY 20,8 1130	32 AUG 17,82
TOTAL CELLS/ML	450	2500
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS	1.8 1.8 2.1 2.1 2.3	1.1 1.1 1.9 1.9
ORGANISM	CELLS PE	
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEEUPODISCALESCOSCINODISCACEAEMELOSIRA	 -	140 6
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESOOCYSTACEAEQUADRIGULA	<u></u> -	· 58 2
SCENEDESMACEAESCENEDESMUS	55 12	29 1
VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONASCHLOROGONIUM	120# 27 14 3	== =
CHRYSOPHYTA .CHRYSOPHYCEAE .OCHROMONADALESDINOBRYACEAEDINOBRYON	41 9	220 9
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROOCOCCALESCHROOCOCCACEAE		
ANACYSTIS GOMPHOSPHAERIA .NOSTOCALES	180# 39	1000# 40
NOSTOCACEAE ANABAENA		1000# 41
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAETRACHELOMONAS	28 6	14 1
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAE		
PERIDINIUM	14 3	29 1

483226092001401 LOCATOR LAKE NEAR INTERNATIONAL FALLS, MN

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY 19	1300		49	25	36	6.3	69.0	12.4	20	2.80	10.0
AUG 17	1530	9.70	48	26	32	7.4	6.9	21.3	40	3.1	9.8

DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE IT-FLD (MG/L AS HCO3) (99440)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
MAY 19 AUG	97	12	2.7	1.2	1.2	.6	6.0	5.0	1.0	32
17	116	11	2.7	1.1	1.0	•3	5.0	4.0	.7	34

DATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, TOTAL (MG/L AS P) (00665)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) (00666)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954)
MAY 19 AUG 17	.04	3	.06 <.01	.50 .30	.014	.008	94 40	6 5	5.00 <.100	<.100 <.100

483226092001401 LOCATOR LAKE NEAR INTERNATIONAL FALLS, MN--Continued PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

INITIOI DANKTON ANABIBED, MAI	. 1,02 10	noa ob.	. 1702	
DATE TIME		19,82 300		17,82 530
TOTAL CELLS/ML	1	700	7	800
DIVERSITY: DIVISION .CLASSORDERFAMILYGENUS		1.7 1.7 2.1 2.5 2.5		0.9 0.9 1.3 1.3
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAEEUPODISCALESCOSCINODISCACEAECYCLOTELLAMELOSIRASTEPHANODISCUS	14 14	1 - 1	 43 *	- 1 0
FRAGILARIALESFRAGILARIACEAETABELLARIA		_	1300#	17
NAVICULALES NAVICULACEAE FRUSTULIA		_	*	0
CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAE			1	
SCHROEDERIA OOCYSTACEAE		-	*	0
ANKISTRODESMUS OOCYSTIS	69 	<u>4</u>	*	0
TREUBARIA PALMELLACEAE		-	*	0
SPHAEROCYSTISSCENEDESMACEAE	210	12		-
CRUCIGENIAVOLVOCALES	220	13		-
CHLAMYDOMONADACEAE CHLAMYDOMONAS	170	10	-	-
CHRYSOPHYTA .CHRYSOPHYCEAECHROMULINALESCHRYSAMOEBACEAECHRYSAMOEBAOCHROMONADALES	41	2		_
DINOBRYACEAE DINOBRYON	14	1	*	0
OCHROMONADACEAE OCHROMONAS	55	3		_
CRYPTOPHYTA (CRYPTOMONADS) CRYPTOPHYCEAE CRYPTOMONADALES CRYPTOCHRYSIDACEAE CHROOMONAS CRYPTOMONADACEAE		<u>.</u>	' 	0
CRYPTOMONAS CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE	28	2	-	-
CHROOCOCCALESCHROOCOCCACEAEANACYSTISGOMPHOSPHAERIANOSTOCALESNOSTOCACEAE	790# 	47 -	2600# 2900#	-
ANABAENA APHANIZOMENON		-	140 580	2 7
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAETRACHELOMONAS	69	4	*	0
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAE				
PERIDINIACEAE PERIDINIUM		_	#	0

483304093062701 RAINY LAKE AT BLACK BAY NEAR INTERNATIONAL FALLS, MN

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
MAY 19	0910		7	77	83	7.2	7.5	14.3	.90	9.1	92
AUG 16	1210	2.60	6	90	80	9.7	8.0	22.4	.80	13.1	157

			SOLIDS,		NITRO-	NITRO-			CHLOR-A	CHLOR-B
	BICAR-	CAR-	RESIDUE	SOLIDS,	GEN,	GEN, AM-		PHOS-	PHYTO-	PHYTO-
	BONATE	BONATE	AT 180	DIS-	NO2+NO3	MONIA +	PHOS-	PHORUS,	PLANK-	PLANK-
	IT-FLD	IT-FLD	DEG. C	SOLVED	DIS-	ORGANIC	PHORUS,	DIS-	TON	TON
	(MG/L	(MG/L	DIS-	(TONS	SOLVED	TOTAL	TOTAL	SOLVED	CHROMO	CHROMO
	AS	AS	SOLVED	PER	(MG/L	(MG/L	(MG/L	(MG/L	FLUOROM	FLUOROM
DATE	HCO3)	CO3)	(MG/L)	AC-FT)	AS N)	AS N)	AS P)	AS P)	(Ua/L)	(UG/L)
	(99440)	(99445)	(70300)	(70303)	(00631)	(00625)	(00665)	(00666)	(70953)	(70954)
14 4 37										
MAY	h O		70	3.0	3 h	70	٥٥٥	000	7.60	/ 100
19 AUG	42		72	.10	.14	•79	.050	•008	7.00	<.100
16	25	13	64	.09	<.01	2.70	.062	.008	17.0	<.100
10	2)	13	04	•09	V.01	2.10	.002	•000	17.0	(*100

483304093062701 RAINY LAKE AT BLACK BAY NEAR INTERNATIONAL FALLS, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DATE TIME		19,82 910		16,82 210
TOTAL CELLS/ML	69	00	15000	00
DIVERSITY: DIVISION .CLASS .ORDERFAMILYGENUS	1 1	•5 •5 •6 •4	0 0 0	.0 .0 .8 .8
ORGANISM	CELLS /ML	PER- CENT	CELLS /ML	PER- CENT
BACILLARIOPHYTA (DIATOMS) BACILLARIOPHYCEAE BUPODISCALES COSCINODISCACEAE CYCLOTELLA MELOSIRA	360 4000#		 	
STEPHANODISCUSFRAGILARIALESFRAGILARIACEAE	79	1		-
ASTERIONELLA FRAGILARIA	1100# 79	1		_
SYNEDRATABELLARIANAVICULALESCYMBELLACEAE	300 180	3		-
CYMBELLA NAVICULACEAE	*	0		-
NAVICULASURIRELLALESSURIRELLACEAE	160	2		-
SURIRELLA CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESDICTYOSPHAERIACEAE	40	1		_
DICTYOSPHAERIUM OOCYSTACEAE	260	4		-
ANKISTRODESMUSSCENEDESMACEAE	60	1		-
COELASTRUMSCENEDESMUS .ZYGNEMATALESDESMIDIACEAE	160 79	2 1		_
COSMARIUM	60	1		-
CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALESCHROOCOCCACEAEGOMPHOSPHAERIA			40000#	27
NOSTOCALESNOSTOCACEAEANABAENA		_	30000#	20
APHANIZOMENON		-	79000#	53
EUGLENOPHYTA (EUGLENOIDS) .EUGLENOPHYCEAEEUGLENALESEUGLENACEAEEUGLENATRACHELOMONAS	* 79	0 1	+	
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAE				
PERIDINIACEAE PERIDINIUM		-	*	0

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15% * - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

483622092560701 RAINY LAKE AT BRULE NARROWS NEAR INTERNATIONAL FALLS, MN

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	RESER- VOIR DEPTH (FEET) (72025)	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER- ATURE (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY 19	1000		17	41	48	6.9	7.4	7.3	2.40	12.5
AUG 16	1330	10.8	15	42	48	7.8	7.6	19.7	3.4	9.7

	OXYGEN,		SOLIDS,		NITRO-	NITRO-			CHLOR-A	CHLOR-B
	DIS-	BICAR-	RESIDUE	SOLIDS,	GEN,	GEN, AM-		PHOS-	PHYTO-	PHYTO-
	SOLVED	BONATE	AT 180	DIS-	N02+N03	MONIA +	PHOS-	PHORUS,	PLANK-	PLANK-
	(PER-	IT-FLD	DEG. C	SOLVED	DIS-	ORGANIC	PHORUS,	DIS-	TON	TON
	CENT	(MG/L	DIS-	(TONS	SOLVED	TOTAL	TOTAL	SOLVED	CHROMO	CHROMO
	SATUR-	AS	SOLVED	PER	(MG/L	(MG/L	(MG/L	(MG/L	FLUOROM	FLUOROM
DATE	ATION)	HCO3)	(MG/L)	AC-FT)	AS N)	AS N)	AS P)	AS P)	(UG/L)	(UG/L)
	(00301)	(99440)	(70300)	(70303)	(00631)	(00625)	(00665)	(00666)	(70953)	(70954)
MAY	100	10	1		- 0	1. 6	216	1	1: 00	
19	108	18	40	•05	.08	.46	.016	.001	4.90	<.100
AUG	110	00	1.0	0.0			200	4 001	1 00	4 100
16	110	20	42	.06	<.01	.10	.008	<.001	1.20	<.100

483622092560701 RAINY LAKE AT BRULE NARROWS NEAR INTERNATIONAL FALLS, MN--Continued

PHYTOPLANKTON ANALYSES, MAY 1982 TO AUGUST 1982

DIVERSITY: DIVISION	DATE TIME		19,82 000	AUG 1	16,82 330
CLASS ORDER 0.9 1.6 PAMILY 0.9 1.6 GENUS 1.7 1.8 CELLS PER- CELLS PER- /ML CENT /ML CENT BACILLARIOPHYTA (DIATOMS) .BACILLARIOPHYCEAE CYCLOTELIA 830* 24 14 2 CYCLOTELIA 2100* 61 120* 15 PRAGILARIALES FRAGILARIA 2100* 61 120* 15 SYNEDRA 266 2 29 4 AVICULALES ENTOMONEIDACEAE ENTOMONEIDACEAE ENTOMONEIDACEAE ENTOMONEIDACEAE ENTOMONEIS * 0 AVICULACEAE PINNULARIA * 0 AVICULACEAE CHLOROCOCCALES CHLOROCOCCALES CHLOROCOCCALES KIRCHNERIELLA * 0 CHLAMYDOMONADACEAE CHLAMYDOMONADACEAE CHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE) CHLAMYDOMONAS 170 5 CYANOPHYCEAE CHCROCOCCALES CHCROCOC	TOTAL CELLS/ML	3	500		750
DRGANISM ML CENT	.CLASS ORDER FAMILY		0.7 0.9 0.9		1.2 1.6 1.6
BACILLARIOPHYCEÁE .EUPODISCALESCOSCINODISCACEAECYCLOTELLA 830# 24 14 2MELOSIRA 2100# 61 120# 15 .FRAGILARIALESFRAGILARIACEAEFRAGILARIA 130# 17SYNEDRA 56 2 29 4 .NAVICULALESENTOMONEIDACEAEENTOMONEIDACEAEPINNULARIA * 0NAVICULACEAEPINNULARIA * 0 CHLOROPHYTA (GREEN ALGAE) .CHLOROCOCCALESCHLOROCOCCALESCHLOROCOCCACEAESCHROEDERIA 29 4OCYSTACEAEANKISTRODESMUS 130 4KIRCHNERIELLA * 0KIRCHNERIELLA * 0KIRCHNERIELLA * 0CHLAMYDOMONADACEAECHLAMYDOMONADACEAECHLAMYDOMONAS 170 5 CYANOPHYCEAECHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHCROCOCCALESCHROC	ORGANISM				
FRAGILARIACEAEFRAGILARIACEAEFRAGILARIAFRAGILARIASYNEDRA 56 2 29 4 .NAVICULALESENTOMONEIDACEAEENTOMONEISNAVICULACEAEPINNULARIA * 0 CHLOROPHYTA (GREEN ALGAE)CHLOROCOCCACEAESCHROEDERIAOOCYSTACEAEANKISTRODESMUSKIRCHNERIELLA .VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONADACEAECHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE)CYANOPHYCEAECHROCOCCACEAECHROCOCCACEAECHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE)CYANOPHYTA (FIRE ALGAE)YOLVOCALESCHROCOCCACEAEANACYSTIS 84 2 430# 58	.BACILLARIOPHYCEAE .EUPODISCALESCOSCINODISCACEAECYCLOTELLA			14	
ENTOMONEIS * 0NAVICULACEAEPINNULARIA * 0 CHLOROPHYTA (GREEN ALGAE) .CHLOROPHYCEAECHLOROCOCCALESCHLOROCOCCACEAESCHROEDERIA 29 4OCYSTACEAEANXISTRODESMUS 130 4KIRCHNERIELLA * 0VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAECHROCCCCACEAEANACYSTIS 84 2 430# 58 PYRRHOPHYTA (FIRE ALGAE) .DINOKONTAEPERIDINIACEAE	FRAGILARIACEAE FRAGILARIA SYNEDRA .NAVICULALES	 56	- 2		
CHLOROPHYTA (GREEN ALGAE) CHLOROPHYCEAE CHLOROCOCCALES CHLOROCOCCACEAE SCHROEDERTA OOCYSTACEAE ANKISTRODESMUS KIRCHNERIELLA VOLVOCALES CHLAMYDOMONADACEAE CHLAMYDOMONADACEAE CHLAMYDOMONADACEAE CHLAMYDOMONAS TO 5 CYANOPHYTA (BLUE-GREEN ALGAE) CYANOPHYCEAE CHROOCOCCACEAE CHROOCOCCACEAE CHROOCOCCACEAE CHROOCOCCACEAE CHROPHYTA (FIRE ALGAE) CDINOKONTAE CDINOKONTAE CPERIDINIACEAE	ENTOMONEIS	*	0		-
CHLOROPHYCEAE .CHLOROCOCCACEAE .CHLOROCOCCACEAE SCHROEDERIA 29 4 OOCYSTACEAE ANKISTRODESMUS 130 4 KIRCHNERIELLA * 0 .VOLVOCALES .CHLAMYDOMONADACEAE CHLAMYDOMONADACEAE CHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCACES .CHROOCOCCACES .CHROOCOCCACEAE ANACYSTIS 84 2 430# 58 PYRRHOPHYTA (FIRE ALGAE) .DINOKONTAE .PERIDINIACEAE		*	0		-
OOCYSTACEAEANKISTRODESMUSKIRCHNERIELLA .VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE) .CYANOPHYCEAE .CHROOCOCCALES .CHROOCOCCACEAEANACYSTIS 84 2 430# 58 PYRRHOPHYTA (FIRE ALGAE) .DINOKONTAEPERIDINIACEAE	.CHLOROPHYCEAE CHLOROCOCCALES CHLOROCOCCACEAE		_	29	и
KIRCHNERIELLA * 0VOLVOCALESCHLAMYDOMONADACEAECHLAMYDOMONAS 170 5 CYANOPHYTA (BLUE-GREEN ALGAE)CHROOCOCCALESCHROOCOCCACEAEANACYSTIS 84 2 430# 58 PYRRHOPHYTA (FIRE ALGAE) .DINOKONTAEDINOKONTAEPERIDINIACEAE	OOCYSTACEAE	120	h	-7	·
CYANOPHYTA (BLUE-GREEN ALGAE) CYANOPHYCEAE CHROOCOCCACEAE CHROOCOCCACEAE ANACYSTIS PYRRHOPHYTA (FIRE ALGAE) DINOPHYCEAE DINORONTAE PPRIDINIACEAE	KIRCHNERIELLAVOLVOCALES				-
.CYANOPHYCEAE .CHROOCOCCALESCHROOCOCCACEAEANACYSTIS 84 2 430# 58 PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAE .DINOKONTAEPERIDINIACEAE		170	5		-
PYRRHOPHYTA (FIRE ALGAE) .DINOPHYCEAEDINOKONTAEPERIDINIACEAE	.CYANOPHYCEAE CHROOCOCCALES CHROOCOCCACEAE	84	2		58
	.DINOPHYCEAE DINOKONTAE PERIDINIACEAE	28	1		_

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15%
* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2%

WATER QUALITY DATA AT STREAMFLOW STATIONS

Field determinations of water temperature and specific conductance are made at many streamflow stations in addition to those that are also regular water-quality stations. These data are usually collected at regular intervals during routine visits to the station. Additional data for each station are published elsewhere in this report.

WATER QUALITY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

D ATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFI CONDUC TANCE (MICRO MHOS)	C- E D-	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- MHOS)
		04010500	PIGEON RIV	PER AT MIDDLE FALLS NEAR (RAND PORTAGE,	, MN	
OCT. 22, 1981 DEC.	296	2.0	70	A PR 27 MA Y	. 3960	4.0	50
01 DEC.	143	•0	95	04 JUNE	. 1930	3.0	
10 JAN.	73	•5		15 JULY	454		
15, 1982 FEB.	95	.0	98	20 AUG.	. 466		
17 MAR.	107	•5		11 SEPT.	. 301	16.0	70
09	92	.0	85	29	. 151	10.0	
			04014500 E	BAPTISM RIVER NEAR BEAVER	BAY, MN		
OCT. 21, 1981 NOV.	259	2.7	54	APR. 21 APR.	537	•0	55
30 JAN.	51	.0	85	26 APR.	. 2290	4.5	<50
14, 1982 MAR.	. 22	•0	125	28 JUNE	. 1110	3.0	<50
10 APR.	. 19	•0	120	22 AUG.	• 57	14.0	80
13	153	.0	92	10	. 278	13.0	55
			04015330	KNIFE RIVER NEAR TWO HARB	ORS, MN		
OCT. 21, 1981	141	4.0	88	APR. 14	. 824	•5	60
DEC. 01		•5	160	APR. 19	_	1.0	60
JAN. 12, 1982	3.5	•0	133	JUNE 23	_	15.0	120
MAR. 11		•5	225	AUG. 13	_	16.5	165
		• ,		25*******		2009	,
		04015475	PARTRIDGE	RIVER ABOVE COLBY LAKE NE	AR HOYT LAKES	, MN	
OCT. 15, 1981	186	9.0	115	APR. 20	465	•0	44
DEC. 02	18	•0	135	MAY 05	314	12.0	55
JAN. 06, 1982		•5	155	JUNE 17	68	16.0	128
MAR. 03		.0	250	AUG. 03	40	21.0	124
• • • • • • • • • • • • • • • • • • • •	3.7	••	-50	3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			04016000	PARTRIDGE RIVER NEAR AURO	ORA, MN		
OCT. 16, 1981	65	9.0	430	APR. 19	. 142	2.0	410
DEC. 02	•	•0	510	JUNE 17		18.0	313
JAN. 06, 1982	-	•5	320	AUG. 03	_	21.5	325
MAR. 03		.0	577	03	. ,		3 -2
		••	_	ST. LOUIS RIVER NEAR AURO	ORA. MN		
OCT.				APR.	• •		
16, 1981 DEC.	251	9.0	155	19 JUNE	• 5 55	1.5	84
02 JAN.	•	•.0	135	17 AUG.	. 222	20.0	57
07, 1982 MAR.	47	•5	400	03	. 214	21.5	59
04	29	.0	160				

WATER QUALTLY DATA AT STREAMPLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- MHOS)	DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- MHOS)
			04018750 ST.	LOUIS RIVER AT FORBE	S, MN		
OCT. 21, 1981	985	6.0	155	MAR. 04	121	.0	***
DEC. 03	300	.0	262	APR. 22	2060	3.0	125
JAN. 07, 1982 JAN.	272	•5	170	JUNE 25 AUG.	397	18.0	210
13	126	•0	280	05	383	23.0	165
			04024000 ST. I	JOUIS RIVER AT SCANLO	N, MN		
OCT. 20, 1981	6810	7.0	115	APR. 20	20400	2.0	75
DEC. 02	1840	•5	140	JUNE 21	1690	18.0	160
JAN. 13, 1982 MAR.	1150	.0	147	AUG. 09	2560	20.0	145
09	1090	.0	105				
			04024098 DEE	R CREEK NEAR HOLYOKE	, MN		
OCT. 05, 1981	11	10.0	225	APR. 30	4.7	7.0	285
NOV. 19	2.7	3.0	290	JUNE 08	1.8	16.5	305
JAN. 07, 1982 MAR.	1.9	•0	360	JULY 29	1.8	17.0	275
02	3.0	2.0	300				
		05046000 03	TTER TAIL RIVER	BELOW ORWELL DAM NEAR	R FERGUS FALL	S, MN	
NOV. 24, 1981	227	4.0	450	APR. 08	632	3.0	350
JAN. 18, 1982	249	.0	470	MAY 28	845	20.0	420
FEB. 18	249	3.0	450	JULY 13	600	24.5	400
MAR. 24	456	3.0	440	SEPT. 21	129	15.0	440
		05050000	BOIS DE SIOUX	RIVER NEAR WHITE ROC	K, SOUTH DAKO	TA	
NOV. 24, 1981	1.0			APR. 13	169		625
JAN. 18, 1982	.0			APR. 23	307	12.0	675
FEB. 18	.0			JUNE 24	.0		
MAR. 23	3.0			JULY 14	61	26.5	1000
MAR. 31 APR.	60			SEPT.	.02		
08	23	3.0	640				
			05061000 ви	FFALO RIVER NEAR HAW	LEY		
FEB. 24, 1982	21	•0	420	MAY 27	65	22.5	740
MAR. 24	91	1.0	450	JULY 28	48	24.5	740
APR. 02	464	2.0	400	AUG. 26	16	17.5	730
APR. 08	244	2.5	500	SEPT. 27	13	13.0	800
		0506	51500 SOUTH BRAI	NCH BUFFALO RIVER AT	SABIN, MIN		
FEB. 23, 1982	•0			JUNE 24	2.0	19.0	970
MAR. 23	408	2.5	450	JULY 29	2.1	21.0	940
APR. 02	1090	3.0	380	AUG. 26	3.2	17.5	90 0
APR. 16 MAY	177	12.0	650	SEPT. 27	EST. 5.0		
27	33	21.5	1100				

WATER QUALITY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- MHOS)	DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- MHOS)
			05062000 BUFFAI	O RIVER NEAR DILWOR!	rh, mn		
OCT. 27, 1981	92	3.0	825	APR. 16	558	10.5	550
DEC.	59	1.5	850	APR. 29	181		770
DEC. 17.,	28	•5	875	MAY 27	136	19.0	900
JAN. 29, 1982	12	***		JUNE 24	30	19.5	760
FEB. 23	18	•0	800	JULY 28	72	24.0	720
MAR. 23,	500	2.0	410	AUG. 26	16	17.5	670
APR. 02	2200	2.0	320	SEPT. 27	14	13.0	650
APR. 08	714	1.5	540				
			.50(0500 !!!!				
O.C.T.		C	12005200 MITD HI	CE RIVER AT TWIN VAL	LEY, MN		
OCT. 27, 1981	254	2.0	480	APR. 13	7 25	1.0	425
DEC. 08	111	•5	580	MAY 05	540	14.5	300
JAN. 20, 1982 MAR.	53	.0	490	JULY 08	73	23.0	462
18 MAR.	189	•0	389	AUG. 26	14	17.0	525
31	1090	•5	260				
			05064000 WILD	RICE RIVER AT HENDRU	M, MN		
OCT. 27, 1981	343	2.5	500	APR. 13	982	2.5	410
DEC. 08	119	•5	650	APR. 17	1930		
JAN. 19, 1982	61	.0	520	MAY 05	579	15.0	390
MAR. 18	93	.0	525	JULY 08	86	21.0	516
APR. 01	2810	•5) C)	AUG. 25	22	19.0	520
020000000	2010	• • •	_	SH RIVER NEAR SHELLY		17.0	720
OCT.			0)00)J00 MAIL	APR.	, ru		
27, 1981 DEC.	17	2.5	530	13 MAY	289	2.0	360
08, JAN.	2.3	1.0	850	05 JULY	7.2	12.5	640
19, 1982 MAR.	.11	•5		02 AUG.	•37	19.0	744
17 APR.	•99	1.0	1040	25	.007		
01	756	•5	280				
			05069000 SAND	HILL RIVER AT CLIMAX	, MN		
OCT. 28, 1981	61	5.0	660	APR. 14	789	1.5	400
DEC. 08	30	•5	770	APR. 17	419	3.0	600
JAN. 19, 1982	12	•0	560	MAY 04	115	16.0	550
MAR. 17	21	•0	460	JULY 01	24	21.0	680
APR. 01	455	•5	300	AUG. 25	11	17.0	610
				KE RIVER NEAR RED LA	KE, MN		
NOV.				APR.	_	_	
05, 1981 DEC.	674	7.0	220	22 MAY	116	6.0	265
17 JAN.	553	•0		24 JULY	1050	15.5	252
28, 1982 MAR.	658	.0		23 SEPT.	977	24.0	280
22	699	1.0	320	02	900	18.5	255

WATER QUALITY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- MHOS)	DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- MHOS)
		05075000	RED LAKE RIVER	AT HIGH LANDING NEAR	R GOODRIDGE, N	MN	
NOV. 04, 1981	790	5.0	290	APR. 15	1650	5.0	, 270
DEC. 16	702	•0	310	MAY 24	1440	19.0	259
JAN. 28, 1982	676	.0	290	JULY _23	1130	23.0	290
MAR. 22	693	•0	320	SEPT. 02	917	18.0	200
APR. 14	1080	1.0	250				
		050	76000 THIEF RIVE	ER NEAR THIEF RIVER	FALLS, MN		
NOV. 04, 1981	17	5.0	800	APR. 14	1100	•0	270
FEB. 23, 1982				MAY 27	492	22.0	485
MAR. 23		. •0		JULY 20	208	25.0	490
APR. 02	. 354	.0	300	SEPT. 02	22	15.5	5 3 5
		•	05078000 CLEARW	ATER RIVER AT PLUMME	ER, MN		
FEB.				MAY	506	1.7	565
24, 1982 MAR.		.0	520	04 JUNE	596	15.0	565
24 MAR.	78	.0	480	09 JUNE	165	13.0	500
31 APR.	950	.5	180	29 AUG.	226	18.0	5 7 5
14 APR.	969	1.5	295	24	47	19.0	650
18	1190	3.0	410 05078230 LO	ST RIVER AT OKLEE, N	A N		
OCT.			0,0,0,0,2,30 110	APR.	1.114		
29, 1981 FEB.	52	5.0	770	14 MAY	1150	1.0	335
24, 1982 MAR.	7.5	•0	440	03 JUNE	112	18.0	560
24 MAR.	19	•0		29 AUG.	34	15.0	724
31 APR.	900	•0	260	24	8.8	19.0	650
12	603	.0	340				
		050	78500 CLEARWATE	R RIVER AT RED LAKE	FALLS, MN		
OCT. 28, 1981	335	5.0	640	APR. 13	1790	.0	330
FEB. 24, 1982		.0	540	MAY 04	694	16.5	550
MAR. 15	94	•0	650	JULY 01	292	18.0	600
APR. 01	2800	•0	225	AUG. 24	72	21.0	660
			05079000 RED LA	KE RIVER AT CROOKSTO	ON, MN		
OCT. 27, 1981	1270	2.5	430	APR. 15	7 500	1.5	315
DEC. 07		•5	410	MAY 04	1980	16.5	440
JAN. 18, 1982		•0	240	JUNE 30	1410	19.5	355
MAR. 16		.0	377	AUG. 25	1090	20.0	345
200000	300	••		DLE RIVER AT ARGYLE,		2010,	3.5
NOV.			, ,	APR.	1		
04, 1981 FEB.		4.0	720	13 MAY	338	•0 .	. 280
25, 1982 MAR.	1.2	.0	710	27 JULY	52	20.0	438
23 APR.	. 9.5	.0	680	21 SEPT.	29	25.0	540
01	257		310	01	. ,78	19.5	615
					1.7		

WATER QUALTIY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- MHOS)	; !	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- MHOS)
		0510450	O ROSEAU R	IVER BELOW SOUTH FORK NEAR	R MALUNG, MA	ı	
NOV. 03, 1981 DEC.	53	4.5	352	A PR. 21 MA Y	1220	•5	240
15	17	.0		26	208	17.5	310
JAN. 27, 1982	4.7	.0	630	JULY 22	35	24.0	390
MAR. 24	8.3	.0	540	SEPT. 01	38	17.0	250
APR. 14	928	1.0	165				
			05107500	O ROSEAU RIVER AT ROSS, M	N		
NOV.	7 11 0	h =	222	APR.	1010	_	060
03, 1981 DEC.	148	4.5	333	20 MAY	1810	•5	260
15 JAN.	58	•0	440	25 JULY	606	17.5	328
26, 1982 MAR.	7.4	•0	610	22 AUG.	78	24.5	375
24 APR.	11	.0	540	31	74	16.0	324
15	1310	3.0	200				
		05112000	ROSEAU RIVE	ER BELOW STATE DITCH 51 NE	AR CARIBOU,	ми	
NOV. 03, 1981	221	3.7	370	APR. 21	1290	5.0	240
DEC. 15	125	•0	450	MAY 19	1120	14.0	
JAN. 07, 1982	2.8	.0		MAY 25	939	18.0	338
JAN. 26	12	•0	660	ЈULY 13	391	23.0	365
MAR. 23	19	•0	530	JULY 13	388	23.0	365
APR. 01	89	•0	302	AUĞ. 31	81	15.0	357
APR. 15	766	1.0	220	SEPT. 28	36	11.5	
			05124480	KAWISHIWI RIVER NEAR ELY,	MN		
OCT.				JUNE			
14, 1981 MAR.	46	10.5	32	15 AUG.	371	18.0	<50
10, 1982 MAY	46	.0	133	04	117	22.5	34
06	660	10.5	32				
			05124990	FILSON CREEK NEAR ELY, I	MN		
OCT. 13, 1981	7.0	9.0	<50	APR. 26	61	6.0	<50
DEC. 01	2.2	•0	37	MAY 05	25	12.0	22
JAN. 05, 1982	1.9	•5	45	JUNE 16	6.8	15.0	<50
MAR.	•34	.0	43	AUG. 04	.38	25.0	38
APR. 20	30	.0	38	V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•30	2,74	35
	50			AWISHIWI RIVER NEAR WINTO	J MN		
OCT.			0)12,000 11.	MAY	•,		
14, 1981	350			06, 1982	4380	8.0	60
			0512 7 500 E	BASSWOOD RIVER NEAR WINTON	, MN		
JUNE 22, 1982	2220	10.0	<36				
cc, 1702···	2230	19.0			CARMAN YTOG	10	
SEPT.		05128000	IN MARABAN KI	IVER AT OUTLET OF LAC LA C	NUTAR CNIAR	10	
02, 1982	3860	18.0	<50				

WATER QUALTIY DATA AT STREAMFLOW STATIONS, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- MHOS)	DATE	MEASURED DISCHARGE (ft ³ /s)	TEMPERA- TURE (°C)	SPECIFIC CONDUC- TANCE (MICRO- MHOS)
		0512	29115 VERMILLI	ON RIVER NEAR CRANE	LAKE, MN		
OCT. 19, 1981 NOV.	584	9.0		APR. 26 MAY	2960	7.0	50
30 JAN.	324	•0	73	03 MAY	1850	13.0	50
14, 1982	189	•5	65	24	2550	18.0	60
MAR. 03	181	•0	75	JUNE 21	976	17.0	60
APR. 21	1890	•0	45	AUG. 02	478	23.5	70
			-1		T 16 1617		
		05	5130500 STURGE	ON RIVER NEAR CHISHO	LM, MN		
OCT. 13, 1981 NOV.	126	9.0	85	APR. 01 APR.	45	•5	130
30 JAN.	79	•0	80	16 APR.	455	•5	70
08, 1982 FEB.	28	•5		21 JUNE	1030	•0	51
08	20	•0	136	24	98	19.0	66
MAR. 01	19	.0	140	AUG. 02	102	20.5	113
		051	31500 ፣ ተምጥርም ቹ	ORK RIVER AT LITTLE	BUBK WN		
o am		0)1	J1700 H111H		ronn, m		
OCT. 01, 1981	427	8.0	190	APR. 23	11100		
NOV.	1040	5.5	75	APR. 27	7860	7.0	95
DEC.	338	•0	160	MAY 19	10200	15.5	80
FEB. 01, 1982	147	•0	220	JULY 21	785	22.0	130
APR. 02	197	•0	188	SEPT. 13	237	17.0	180
		05	122500 PATNY B	IVER AT MANITOU RAP	The MN		
0.00		0)	1)))OO MAINI N		,		
OCT. 01, 1981	5610	7.3	123	JULY 20	23600	19.5	79
APR. 27, 1982	29900	7.0	95	SEPT. 14	8180	15.0	105
			0512H200 0512H	RIVER NEAR BAUDETTI	e MN		
NOT			ODIDASOO WALID		env e		
NOV. 02, 1981 DEC.	412	5.0	150	APR. 16 MAY	3810	1.0	110
16	70	•0		21	1650	13.0	155
FEB. 03, 1982 APR.	15	•0		JULY 23 SEPT.	526	19.5	
01	50	•0	257	15	92	11.0	215

GROUND-WATER RECORDS

Figure 8.--Location of ground-water wells

BECKER COUNTY

464613095524801. Local number, 138N41W17ADA01. LOCATION.--Lat 46°46'13", long 95°52'48", in NE4SE4NE4 sec.17, T.138 N., R.41 W., Hydrologic Unit 09020103, east shore of Lake Sallie.

Owner: U.S. Geological Survey. AQUIFER. -- Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 6 in (0.15 m), depth 234 ft (71.3 m), screened 222 to 234 ft (67.7 to 71.3 m).

DATUM .-- Land-surface datum is 1,333.2 ft (406.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 4.40 ft (1.34 m) above land-surface datum.

REMARKS .-- Water level affected by pumping of nearby well.

PERIOD OF RECORD. -- March 1973 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.44 ft (1.35 m) above land-surface datum, May 23, 27, 1975; lowest, 2.47 ft (0.75 m) below land-surface datum, July 25, 1977.

WATER LEVEL, IN FEET ABOVE LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	1.95 2.20 1.80 2.60 2.75 2.75	2.85 2.75 2.80 2.80	2.80 2.80 3.43 3.50	3.55 3.40 3.55 3.60 3.20		3.25 3.20 3.25 3.20 3.25	3.28	3.06 3.20 3.21 2.13 1.96	1.59 2.09 3.10 2.40 1.40	1.30 2.90 1.49 2.25 2.50 1.35	0.95 2.20 1.00 2.05 1.45 1.20	0.95 1.25 2.40 2.00 1.25 1.70

WTR YEAR 1982 HIGHEST 4.37 MAY 22, 1982 LOWEST 0.32 OCT. 6, 1981

464401095571301. Local number, 138N42W26CDA01. LOCATION.--Lat 46°44'01", long 95°57'13", in NEASEASWA sec.26, T.138 N., R.42 W., Hydrologic Unit 09020103, on Don Bullock farm.

Owner: Don Bullock.

AQUIFER .-- Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 14 in (0.03 m), depth 90 ft (27.4 m), screened 88 to 90 ft (26.8 to 27.4 m).

DATUM.--Altitude of land-surface datum is 1,390 ft (424 m). Measuring point: Top of casing, 3.00 ft (0.91 m) above land-surface datum.

PERIOD OF RECORD .-- November 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 52.62 ft (16.04 m) below land-surface datum, June 13, 1980, Nov. 23, 1980; lowest, 53.99 ft (16.46 m) below land-surface datum, Jan. 22, 1979.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
MAR 21	53.65	APR 26	53.76	MAY 29	53.36	JUL 3	52.96	AUG 7	53.42	SEP 11	53.38

BECKER COUNTY--Continued

464550096095901. Local number, 138N43W18CDA01. LOCATION.--Lat 46045'50", long 96009'59", in NE\\$SE\\$SW\\$ sec.18, T.138 N., R.18 W., Hydrologic Unit 09020103, on Fred Kraft farm.

U.S. Geological Survey. Owner:

Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1% in(0.03 m), depth 77 ft (23.5 m), screened

75 to 77 ft (22.9 to 23.5 m).

DATUM.--Altitude of land-surface datum is 1,420 ft (433 m). Measuring point: Top of casing, 3.75 ft (1.14 m)

above land-surface datum.

PERIOD OF RECORD.--November 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 58.47 ft (17.82 m) below land-surface datum, June 1, 1980; lowest, 60.67 ft (18.49 m) below land-surface datum, Mar. 21, 1982.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
MAR 21	60.67	APR 26	60.15	MAY 29	60.14	JUL 3	60.03	AUG 7	60.14	SEP 11	60.33

465422095495501. Local number, 140N41W26CCD01. LOCATION.--Lat 46°54'22", long 95°49'55", in SE&SW&SW& sec.26, T.140 N., R.41 W., Hydrologic Unit 09020103, on Paul Scarie farm.

Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1% in (0.03 m), depth 53 ft (16.2 m), screened

51 to 53 ft (15.5 to 16.2 m). DATUM.--Altitude of land-surface datum is 1,422 ft (433 m). Measuring point: Top of casing, 2 40 ft (0.73 m)

above land-surface datum.

PERIOD OF RECORD.--December 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 30.75 ft (9.37 m) below land-surface datum, May 8, 1978; lowest, 33.98 ft (10.36 m) below land-surface datum, Mar. 21, 1982.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
MAR 31	33 08	APR 26	3 2 8 3	OC VAM	33 00	TIII. 3	33 33	AUG 7	33 16	SEP 11	33 23

140N41W26CCD01

BELTRAMT COUNTY

474111094331401. Local number, 149N31W25DCD01. LOCATION.--Lat 47°41'11", long 94°33'14", in SEASWASEA sec.25, T.149 N., R.31 W., Hydrologic Unit 07010101, at Blackduck Lookout Tower.

Owner: U.S. Geological Survey.
AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS .-- Drilled observation water-table well, diameter 2 in (0.05 m), depth 157 ft (47.8 m),

screened 154 to 157 ft (46.9 to 47.8 m).

DATUM.--Land-surface datum is 1,450 ft (442 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.10 ft (0.94 m) above land-surface datum. PERIOD OF RECORD.--July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 70.63 ft (21.53 m) below land-surface datum, July 28, 1980; lowest, 104.5 ft (31.85 m) below land-surface datum, July 27, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 2	104.0	DEC 16	102.5	MAY 21	103.3	JUL 23	102.5	SEP 15	102.1

474111094331402. Local number, 149N31W25DCD02. LOCATION.--Lat 47°41'11", long 94°33'14", in SEASWASEA sec.25, T.149 N., R.31 W., Hydrologic Unit 07010101, at Blackduck Lookout Tower.

Owner: U.S. Geological Survey
AQUIFER.--Sandy till of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in (0.05 m), depth 65 ft (19.8 m), screened 62 to 65 ft (18.9 to 19.8 m).

DATUM .- Land-surface datum is 1.448 ft (441.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top

of casing, 3.10 ft (0.94 m) above land-surface datum.

PERIOD OF RECORD.--July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.51 ft (0.46 m) below land-surface datum, May 21, 1982; lowest, 15.95 ft (4.86 m) below land-surface datum, Sept. 15, 1982.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 2	3.73	DEC 16	4.71	MAY 21	1.51	JUL 23	11.68	SEP 15	15.95

474111094331403. Local number, 149N31W25DCD03.
LOCATION.--Lat 47°41'11", long 94°33'14", in SEASWASEA sec.25, T.149 N., R.31 W., Hydrologic Unit 07010101, at Blackduck Lookout Tower.

Owner: U.S. Geological Survey AQUIFER.--Buried sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in (0.05 m), depth 130 ft (39.6 m), screened 127 to 130 ft (38.7 to 39.6 m).

DATUM .-- Land-surface datum is 1,449.7 ft (441.9 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.30 ft (1.01 m) above land-surface datum.

PERIOD OF RECORD. --July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 69.60 ft (21.21 m) below land-surface datum, July 28, 1980; lowest, 102.6 ft (31.27 m) below land-surface datum, July 27, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 2	101.9	SEP 15	93.00

BELTRAMI COUNTY--Continued

474111094331404. Local number, 149N31W25DCD04. LOCATION.--Lat 47°41'11", long 94°33'14", in SE&SW&SE& sec.25, T.149 N., R.31 W., Hydrologic Unit 07010101, at Blackduck Lookout Tower.

Owner: U.S. Geological Survey.

AQUIFER. -- Sandy till of Pleistocene Age.
WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 2 in (0.05 m), depth 77 ft (23.5 m), screened 74 to 77 ft (22.6 to 23.5 m).

DATUM.--Land-surface datum is 1,449.3 ft (441.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.80 ft (0.85 m) above land-surface datum.

PERIOD OF RECORD.--July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 23.45 ft (7.15 m) below land-surface datum, July 28, 1980;

lowest, 74.58 ft (22.73 m) below land-surface datum, July 23, 1982.

WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 2	63.75	DEC 16	64.33	MAY 21	72.40	JUL 23	74.58	SEP 15	71.80

481711094331601. Local number, 156N31W36DAA01. LOCATION.--Lat 48017'11", long 94033'16", in NE‡NE‡SE‡ sec.36, T.156 N., R.31 W., Hydrologic Unit 09020302, at Ludlow Lookout Tower.

Owner: U.S. Geological Survey.

AQUIFER.--Sandy clay of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in (0.05 m), depth 139 ft (42.4 m), screened

136 to 139 ft (41.4 to 42.4 m).

DATUM.--Land-surface datum is 1,194.6 ft (364.1 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.15 ft (6.55 m) above land-surface datum. PERIOD OF RECORD.--July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 0.85 ft (0.26 m) below land-surface datum, Nov. 2, 1981; lowest, 3.28 ft (1.00 m) below land-surface datum, Feb. 3, 1982.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOA 5	0.85	DEC 16	1.76	FEB 3	3.28	MAY 21	2.92	JUL 23	1.19	SEP 15	Well lestroyed

481711094331602. Local number, 156N31W36DAA02. LOCATION.--Lat 48017'11", long 94033'16", in NEtNEtSEt sec.36, T.156 N., R.31 W., Hydrologic Unit 09020302, at Ludlow Lookout Tower.

Owner: U.S. Geological Survey

AQUIFER .-- Buried sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in (0.05 m), depth 107 ft (32.6 m), screened 104 to 107 ft (31.7 to 32.6 m).

DATUM.--Land-surface datum is 1,195.8 ft (364.5 m) National Geodetic Vertical Datum of 1929. Measuring point: Top

of casing, 1.90 ft (0.58 m) above land-surface datum.

PERIOD OF RECORD.—July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 3.87 ft (1.18 m) below land-surface datum, Sept. 15, 1982; lowest, 4.78 ft (1.46 m) below land-surface datum, Apr. 23, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOA 5	4.60	DEC 16	4.54	FEB 3	4.49	MAY 21	4.21	JIII. 23	4.30	SEP 15	3.87

BELTRAMI COUNTY--Continued

481711094331603. Local number, 156N31W36DAA03 LOCATION.--Lat 48017'11", long 94033'16", in NEANEASEA sec.36, T.156 N., R.31 W., Hydrologic Unit 09020302, at Ludlow Lookout Tower.

Owner: U.S. Geological Survey.
AQUIFER.--Buried sand of Pleistocene Age.

WELL CHARACTERISTICS. -- Drilled observation artesian well, diameter 2 in (0.05 m), depth 82 ft (25.0 m), screened 79 to 82 ft (24.1 to 25.0 m).

DATUM.--Land-surface datum is 1,196.7 ft (364.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft (0.91 m) above land-surface datum.

PERIOD OF RECORD.--July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.72 ft (0.83 m) below land-surface datum, July 23, 1982;

lowest, 4.81 ft (1.47 m) below land-surface datum, Apr. 23, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 2	4.49	DEC 16	4.45	FEB 3	4.44	MAY 21	4.35	JUL 23	2.72	SEP 15	Well destroyed

CARLTON COUNTY

463437092313301. Local number, 047N17W07AAB01. LOCATION.--Lat 46°34'37", long 92°31'33", in NW&NE&NE& sec.7, T.47 N., R.17 W., Hydrologic Unit 04010301, on Merle

Olson farm.

Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARGERISTICS.--Bored observation water-table well, diameter 1½ in (0.04 m), depth 33 ft (10.1 m), screened

31 to 33 ft (9.4 to 10.1 m).

DATUM.--Altitude of land-surface datum is 1,110 ft (338 m). Measuring point: Top of easing, 4.00 ft (1.22 m) above land-surface datum. PERIOD OF RECORD.--October 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 8.74 ft (2.66 m) below land-surface datum, May 5, 1982; lowest, 11.58 ft (3.53 m) below land-surface datum, Mar. 29, 1982.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
MAR 29	11.58	MAY 5	8.74	JIIN 11	9.70	JIII. 15	0 71	SEP 6	10 Ji1

CARLTON COUNTY -- Continued

463948092280301. Local number, 048N17W02CCC01 LOCATION.--Lat 46°39'48", long 92°28'03", in SW\u00e4SW\u00e4SW\u00e4 sec.2. T.48 N., R.17 W, Hydrologic Unit 04010201, 1.4 mi (2.2 km) west of Carlton.

Owner: U. S. Geological Survey.
AQUIFER.--Surficial Sand of Pleistocene Age.

WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 11 in (0.04 m), depth 28 ft (8.5 m), screened 26 to 28 ft (7.9 to 8.5 m).

DATUM.--Altitude of land-surface datum is 1,130 ft (344 m). Measuring point: Top of casing, 2.30 ft (0.70 m)

above land-surface datum.

PERIOD OF RECORD. --August 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 21.87 ft (6.67 m) below land-surface datum, June 11, 1982; lowest, 25.60 ft (7.80 m) below land-surface datum, Mar. 29, 1982.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25	24.06	MAR 29	25.60	MAY 5	23.75	JUN 11	21.87	JUL 15	22.17	SEP 6	23.13

464346092304901. Local number, 049N17W17ADD01. LOCATION.--Lat 46°43'46", long 92°30'49", in SE\SE\NE\ sec.17, T.49 N., R.17 W., Hydrologic Unit 04010201, 1.5 mi (2.4 km) west of Cloquet.

Owner: City of Cloquet, well 7.
AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 48 in (1.22 m), depth 49 ft (14.9 m), screened 39 to 49 ft (11.9 to 14.9 m).

DATUM.--Land-surface datum is 1,263.8 ft (385.2 m) National Geodetic Vertical Datum of 1929. Measuring point:
Hole in steel cover, 2.30 ft (0.70 m) above land-surface datum.
PERIOD OF RECORD.--March 1977 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.38 ft (1.94 m) below land-surface datum, May 5, 1982;

lowest, 9.05 ft (2.76 m) below land-surface datum, Mar. 7, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25	7.17	NOV 20	7.48	MAY 5	6.38	JUN 11	7.41	JUL 15	7.32	SEP 6	7.58

CLAY COUNTY

463854096250701. Local number, 137N45W30CDB01. LOCATION.--Lat 46°38'54", long 96°25'07", in NE\\$SE\\$SW\\$ sec.30, T.137 N., R.45 W., Hydrologic Unit 09020106, in Barnesville.

Owner: City of Barnesville, well 3. AQUIFER.--Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 10 in (0.25 m), depth 73 ft (22.2 m). DATUM.--Altitude of land-surface datum is 1,022 ft (312 m). Measuring point: Top of casing, 1.50 ft (0.46 m)

above land-surface datum.

PERIOD OF RECORD.--January 1949 to January 1975, May 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.86 ft (0.57 m) below land-surface datum, June 9, 1962; lowest, 11.86 ft (3.61 m) below land-surface datum, June 3, 1970.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 2 9 16	9.20 9.08 9.01	DEC 4 11 18	8.79 8.79 8.83	JAN 29 FEB 5 12	9.06 9.14 9.16	MAR 26 APR 2 9	8.96 8.66 8.66	MAY 21 28 JUN 4	8.46 8.48 8.48	JUL 30 AUG 6 13	9.43 9.50 9.65
23 30 NOV 6	8.91 8.80 8.78	JAN 4	8.84 8.89	19 26 MAR 5	9.20 9.20 9.24	16 23 30	8.65 8.59 8.56	11 18 JUL 9	8.38 8.95 9.29	20 SEP 3 10	9.65 9.66 9.68
13 20	8.78 8.76	15 22	8.90 8.94 8.98	12 19	9.15 9.04	MAY 7 14	8.58 8.48	16 23	9.25 9.46	17 24	9.64 9.61
27	8.78										

CLAY COUNTY--Continued

CLAY COUNTY--Continued

465237096383901. Local number, 139N47W05CDC01. LOCATION.--Lat 46°52'37", long 96°38'39", in SW&SE&SW& sec.5, T.139 N., R.47 W., Hydrologic Unit 09020104, 2.4 mi (3.9 km) east of Dilworth.

Owner: City of Moorhead, MS-1.

AQUIFER.--Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 8 in (0.20 m), depth 131 ft (39.9 m), slotted

WELL CHARACTERISTICS.--Drilled observation waver-table well, distance of in (27.7 to 32.6 m).

91 to 107 ft (27.7 to 32.6 m).

DATUM.--Land-surface datum is 916.7 ft (279.4 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder floor, 3.60 ft (1.10 m) above land-surface datum.

REMARKS.--Water level affected by pumping from nearby wells.

PERIOD OF RECORD. -- January 1947 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 12.19 ft (3.72 m) below land-surface datum, July 15, 1947; lowest, 30.59 ft (9.32 m) below land-surface datum, July 23, 1980.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27	29.23	DEC 4	29.09	FEB 23	29.54	APR 16	29.29	MAY 27	28.81	AUG 17	30.52

465328096391001. Local number, 139N47W06AAA01. LOCATION.-Lat 46°53'27", long 96°39'08", in NE&NE&NE& sec.6, T.139 N., R.47 W., Hydrologic Unit 09020104, 2.7 mi (4.3 km) northeast of Dilworth.

Owner: U.S. Geological Survey, M-80.
AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS .-- Drilled observation artesian well, diameter 3 in (0.08 m), depth 103 ft (31.4 m), casing slotted near bottom.

DATUM. --Altitude of land-surface datum is 915 ft (279 m). Measuring point: Top of casing, 2.50 ft (0.76 m) above land-surface datum.

REMARKS. --Water level affected by pumping.

PERIOD OF RECORD. -- July 1949 to April 1966, November 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 16.94 ft (5.16 m) below land-surface datum, July 16, 1949; lowest, 28.88 ft (8.80 m) below land-surface datum, Aug. 17, 1982.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27	28.22	DEC 4	28.19	FEB 23	28.14	APR 16	28.43	MAY 27	28.21	AUG 17	28.88

465231096415801. Local number, 139N48W11ABA01. LOCATION.--Lat 46°52'31", long 96°41'58", in NE&NW&NE& sec.11, T.139 N., R.48 W., Hydrologic Unit 09020104, at Dilworth.

Owner: City of Dilworth.

AQUIFER.--Buried sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in (0.20 m), depth 152 ft (46.3 m).
DATUM.--Altitude of land-surface datum is 908 ft (277 m). Measuring point: Top of recorder platform, 2.40 ft (0.73 m) above land-surface datum.

REMARKS .-- Water level affected by pumping.

PERIOD OF RECORD.--May 1965 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 101.3 ft (30.88 m) below land-surface datum, Dec. 29, 1965; lowest, 129.1 ft (39.35 m) below land-surface datum, July 23, 1980.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27	123.4	DEC 4	122.8	FEB 23	122.7	APR 16	122.2	MAY 27	123.3	AUG 17	127.9

CLAY COUNTY -- Continued

GRANT COUNTY

455254096051901. Local number, 128N43W21CBB01. LOCATION.--Lat 45°52'54", long 96°05'19", in NW\u00e4NW\u00e4SW\u00e4 sec.21, T.128 N., R.43 W., Hydrologic Unit 09020101.

Owner: Edward Ellison.

AQUIFER .-- Buried sand of Pleistocene Age.

WELL CHARACTERISTICS. -- Drilled irrigation artesian well, diameter 6 in (0.15 m), depth 56 ft (17.1 m), screened 51 to 56 ft (15.5 to 17.1 m). DATUM. -- Altitude of land-surface datum is 1,090 ft (332 m). Measuring point: Top of casing, 1.00 ft (0.30 m)

above land-surface datum.

PERIOD OF RECORD. --October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 13.42 ft (4.09 m) below land-surface datum, Feb. 24, 1981; lowest, 13.80 ft (4.21 m) below land-surface datum, May 26, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22 NOV 17	13.62 13.59	MAY 28 JUN 4	13.58 13.60	JUN 29	13.61	JUL 2	13.60	AUG 25	13.59	SEP 30	13.58

455932095582601. Local number, 129N42W09CCC01. LOCATION.--Lat 45°59'32", long 95°58'26", in SWłSWł sec.9, T.129 N., R.42 W., Hydrologic Unit 09020102, in Elbow Lake.

Owner: City of Elbow Lake, old well 2.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in (0.30 m), depth 214 ft (65.2 m), screened 200

to 220 ft (61.0 to 67.1 m).

DATUM.--Altitude of land-surface datum is 1,222 ft (372 m). Measuring point: Top of platform, 1.40 ft (0.43 m) above land-surface datum.

REMARKS .-- Water level affected by pumping.

PERIOD OF RECORD .-- February 1964 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 74.70 ft (22.77 m) below land+surface datum, Mar. 7, 1980; lowest, 80.54 ft (24.55 m) below land-surface datum, Aug. 31, 1976.

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 31 NOV 30	75.20 75.10	DEC 31 JAN 30	75.30 75.20	FEB 27 MAR 31	75.10 75.10	APR 30 JUN 30	75.50 75.58	JUL 31 AUG 31	75.20 75.50	SEP 30	75.40

GRANT COUNTY -- Continued

460249096094301. Local number, 130N44W25BCB01. LOCATION.--Lat 46°02'49", long 96°09'43", in NW4SW4NW4 sec.25, T.130 N., R.44 W., Hydrologic Unit 09020101. Owner: Adams Bros. AQUIFER.--Buried sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled irrigation artesian well, diameter 12 in (0.30 m), depth 105 ft (32.0 m), screened 85 to 105 ft (25.9 to 32.0 m).

DATUM.--Altitude of land-surface datum is 1,092 ft (333 m). Measuring point: Opening in casing, 0.20 ft (0.06 m) above land-surface datum.

PERIOD OF RECORD.--June 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 35.80 ft (10.91 m) below land-surface datum, June 16, 1980; lowest, 61.97 ft (18.89 m) below land-surface datum, Aug. 22, 1978.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22 NOV 17	39.61 39.67	MAY 28 JUN 4	39.82 39.67	JUN 29	39.59	JUL 2	39.55	AUG 25	39.01	SEP 30	38.35

130N44W25BCB01

ITASCA COUNTY

474917093144601. Local number, 062N23W35BAB01.
LOCATION.--Lat 47°49'17", long 93°14'46", in NW\ne\nw\sec.35, T.62 N., R.23 W., Hydrologic Unit 09030005, at
Thistledew Ranger Station.
Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 14 in (0.03 m), depth 29 ft (8.8 m), screened

27 to 29 ft (8.2 to 8.8 m).

DATUM.--Altitude of land-surface datum is 1,393 ft (425 m). Measuring point: Top of casing, 3.30 ft (1.01 m) above land-surface datum.

REMARKS .-- Measured weekly by State Forestry personnel.

PERIOD OF RECORD. -- September 1970 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 17.35 ft (5.29 m) below land-surface datum, Aug. 20, 1975; lowest, 21.22 ft (6.47 m) below land-surface datum, Aug. 24, Sept. 7, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL										
MAR 31	18.85	MAY 19	21.10	JUN 16	20.35	JUL 14	20.05	AUG 18	19.85	SEP 21	19.95
APR 13	18.87	26	20.95	30	19.85	28	19.85	SEP 8	19.85	29	19.90

473840093515101. Local number, 148N25W08DDD01. LOCATION.--Lat 47°38'40", long 93°51'51", in SE\sE\sE\sE\sec.8, T.148 N., R.25 W., Hydrologic Unit 09030006, at Spring Lake.

Owner: U.S. Geological Survey.
AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 14 in (0.03 m), depth 10 ft (3.0 m), screened 8 to 10 ft (2.4 to 3.0 m).

DATUM.--Altitude of land-surface datum is 1,350 ft (411 m). Measuring point: Top of casing, 3.40 ft (1.04 m)

above land-surface datum.

PERIOD OF RECORD .-- September 1970 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 4.40 ft (1.34 m) below land-surface datum, July 13, 1979; lowest, 7.44 ft (2.27 m) below land-surface datum, Jan. 3, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 4 DEC 14	5.30 5.41	FEB 1	5.98	MAR 30	5.93	MAY 19	4.57	JUL 19	4.95	SEP 13	5.35

148N25W08DDD01

KOOCHICHING COUNTY

481148093445601. Local number, 066N27W24DAA01.
LOCATION.--Lat 48°11'48", long 93°44'56", in NE\RE\SE\ sec.24, T.66 N., R.27 W., Hydrologic Unit 09030006, 2.5 mi
(4.0 km) east of Big Falls.
Owner: U.S. Geological Survey.
AQUIFER.--Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 1% in (0.03 m), depth 22 ft (6.7 m), casing perforated near bottom.

DATUM.--Altitude of land-surface datum is 1,234 ft (376 m). Measuring point: Top of casing, 3.12 ft (0.95 m)

above land-surface datum. PERIOD OF RECORD. -- December 1969 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 14.85 ft (4.53 m) below land-surface datum, Oct. 4, 1979; lowest, 18.98 ft (5.78 m) below land-surface datum, June 13, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 2 NOV 4	17.43 17.64	DEC 14 FEB 1	17.70 17.97	MAR 30	17.90	MAY 19	17.67	JUL 19	16.50	SEP 13	16.89

481345093582801. Local number, 155N26W21DAA01. LOCATION.--Lat 48°13'45", long 93°58'28", in NE&NE&SE& sec.21, T.155 N., R.26 W., Hydrologic Unit 09030006, in Pine Island State Forest.

Owner: U.S. Geological Survey.

AQUIFER .-- Till of Pleistocene Age.

WELL CHARACTERISTICS .-- Driven observation artesian well, diameter 1% in (0.03 m), depth 11 ft (3.4 m), screened 8

to 11 ft (2.4 to 3.4 m).

DATUM.--Altitude of land-surface datum is 1,208 ft (368 m). Measuring point: Top of casing, 2.50 ft (0.76 m) above land-surface datum.

REMARKS .-- Water level subject to freezing during winter periods.

PERIOD OF RECORD. -- October 1973 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 0.65 ft (0.20 m) above land-surface datum, Dec. 8, 1975; lowest, 3.97 ft (1.21 m) below land-surface datum, Feb. 7, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 2 NOV 4	0.30 0.47	DEC 14 FEB 1	0.91 1.40	MAR 30	1.25	MAY 19	0.19	JUL 19	0.69	SEP 13	0.99

KOOCHICHING COUNTY--Continued

481345093582802. Local number, 155N26W21DAA02.
LOCATION.--Lat 48°13'45", long 93°58'28", in NE\ne\set sec.21, T.155 N., R.26 W., Hydrologic Unit 09030006, in Pine Island State Park.

Owner: U.S. Geological Survey.

AQUIFER.--Peat of Quaternary Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 2 in (0.05 m), depth 3 ft (0.9 m), screened 0 to 3 ft (0.0 to 0.9 m).

DATUM. -- Altitude of land-surface datum is 1,208 ft (368 m). Measuring point: Top of plastic casing, 2.50 ft (0.76

m) above land-surface datum.

PERIOD OF RECORD.--October 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.12 ft (0.34 m) above land-surface datum, May 19, 1982; lowest, dry below land-surface datum, Oct. 4, 1976 to Mar. 21, 1977; Aug. 25, 1980.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 2	0.66	NOV 4	0.62	MAY 19	+1.12	JUL 19	+0.69	SEP 13	+0.52

LAKE OF THE WOODS COUNTY

484552095052401. Local number, 161N34W18BCC01. LOCATION.--Lat 48°45'52", long 95°05'24", in SWłSWłNWł sec.18, T.161 N., R.34 W., Hydrologic Unit 09030009, 2.4 mi (3.9 km) south of Roosevelt.

Owner: U.S. Geological Survey.

AQUIFER. --Surficial sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS. --Bored observation water-table well, diameter 11 in (0.03 m), depth 11 ft (3.4 m), screened 9 to 11 ft (2.7 to 3.4 m).

DATUM.--Altitude of land-surface datum is 1,210 ft (369 m). Measuring point: Top of casing, 4.60 ft (1.40 m)

above land-surface datum. PERIOD OF RECORD. -- September 1970 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 3.76 ft (1.15 m) below land-surface datum, Apr. 27, 1978; lowest, 8.05 ft (2.45 m) below land-surface datum, Aug. 25, 1972.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 2 DEC 14	4.52 4.53	JAN 25	4.65	MAR 22	6.17	MAY 25	5.57	JUL 15	3.96	AUG 30	4.13

MAHNOMEN COUNTY

471653096020301. Local number, 144N42W20BBA01. LOCATION.--Lat 47°16'53", long 96°02'03", in NEANWANWA sec.20, T.144 N., R.42 W., Hydrologic Unit 09020108, about 3 m1 (4.8 km) southwest of Mahnomen.

Owner: Tom Wendt.

AQUIFER. -- Buried sand of Pleistocene Age.

WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 4 in (0.10 m), depth 130 ft (39.6 m).

DATUM. -- Altitude of land-surface datum is 1,197 ft (365 m). Measuring point: Top of casing, 1.60 ft (0.49 m)

above land-surface datum.

PERIOD OF RECORD. -- August 1964 to September 1969, August 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 45.43 ft (13.85 m) below land-surface datum, May 18, 1966; lowest, 47.81 ft (14.57 m) below land-surface datum, Sept. 16, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27 DEC 8	47.20 47.47	JAN 20	47.48	MAR 17	47.09	MAY 5	46.45	JUL 6	46.74	AUG 26	47.32

MARSHALL COUNTY

481604096391501. Local number, 155N47W11AAA03. LOCATION.--Lat 48°16'04", long 96°39'15", in NE\NE\NE\ sec.11, T.155 N., R.47 W., Hydrologic Unit 09020309, 6.5 mi (10.5 km) northeast of Warren.

Owner: U.S. Geological Survey. AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS .-- Drilled observation artesian well, diameter 6 in (0.15 m), depth 86 ft (26.2 m), screened 83 to 86 ft (25.3 to 26.2 m). DATUM .-- Altitude of land-surface datum is 905 ft (276 m). Measuring point: Wood floor of instrument shelter, 3.10

ft (0.94 m) above land-surface datum. REMARKS. -- Water level affected by pumping from nearby city well. Water-level hydrograph for this well is in the

introduction to this volume. PERIOD OF RECORD. -- October 1956 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 5.83 ft (1.78 m) below land-surface datum, Feb. 26, 1958; lowest, 34.62 ft (10.55 m) below land-surface datum, Sept. 24, 1981.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 4 DEC 16	s27.11 s24.80	JAN 27	19.77	MAR 27	18.87	MAY 27	18.60	JUL 21	18.76	SEP 1	18.58

s Nearby well being pumped.

482048096481901. Local number, 156N48W10DAA02. LOCATION.--Lat 48°20'48", long 96°48'19", in NELNELSEL sec.10, T.156 N., R.48 W., Hydrologic Unit 09020309, northeast of Argyle.

Owner: U.S. Geological Survey.

AQUIFER . -- Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 1% in (0.03 m), depth 26 ft (7.9 m), screened

24 to 26 ft (7.3 to 7.9 m).

DATUM.--Altitude of land-surface datum is 851 ft (259 m). Measuring point: Top of casing, 4.00 ft (1.22 m) above

land-surface datum.

REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--September 1963 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.55 ft (1.08 m) below land-surface datum, June 19, 1979; lowest, 11.53 ft (3.51 m) below land-surface datum, Mar. 9, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 4 DEC 16	6.02 6.10	JAN 27	6.69	MAR 23	6.90	MAY 27	4.47	JUL 21	3.99	SEP 1	5.14

MARSHALL COUNTY--Continued

482354096501001. Local number, 157N48W27BAA01. LOCATION.--Lat 48°23'54", long 96°50'10", in NE4NE4NW4 sec.27, T.157 N., R.48 W., Hydrologic Unit 09020311, 4.3 mi (6.9 km) north of Argyle.

Owner: U.S. Geological Survey.

AQUIFER .-- Buried sand of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation artesian well, diameter 1% in (0.03 m), depth 24 ft (7.3 m), screened 22 to 24 ft (6.7 to 7.3 m).

DATUM.--Altitude of land-surface datum is 844 ft (257 m). Measuring point: Top of casing, 3.00 ft (0.91 m) above

land-surface datum.

PERIOD OF RECORD .-- October 1971 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 1.88 ft (0.57 m) below land-surface datum, July 29, 1975; lowest, 6.65 ft (2.03 m) below land-surface datum, May 27, 1982.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 4	5.20	DEC 16	5.09	MAR 23	5.52	MAY 27	6.65	JUL 21	4.85	SEP 1	4.98

OTTER TAIL COUNTY

462538095530201. Local number, 134N41W08CCC01. LOCATION.--46025'38", long 95053'02", in SW&SW&SW&SSW&SEC.8, T.134 N., R.41 W., Hydrologic Unit 09020103, 0.9 mi (1.4 km) west of County Roads 35 and 22.

Owner: U.S. Geological Survey.

AQUIFER .-- Surficial sand and Pleistocene Age.

WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 2 in (0.05 m), depth 43 ft (13.1 m),

screened 40 to 43 ft (12.2 to 13.1 m).

DATUM.--Altitude of land-surface datum is 1,368 ft (417 m). Measuring point: Top of casing, 1.70 ft (0.52 m) above land-surface datum.

PERIOD OF RECORD .-- November 1967 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 25.31 ft (7.71 m) below land-surface datum, June 1, 1974; lowest, 28.73 ft (8.76 m) below land-surface datum, Mar. 15, 1982.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 15 NOV 12	28.28 28.33	DEC 16 JAN 12	28.47 28.57	FEB 12 MAR 15	28.69 28.73	APR 13 JUN 16	27.49 27.30	JUL 14 AUG 17	27.30 27.54	SEP 14	27.69

462522096031901. Local number, 134N43W14ADB01. LOCATION.--Lat 46°25'22", long 96°03'19", in NW&SE&NE& sec.14, T.134 N., R.43 W., Hydrologic Unit 09020103, on Ron Heikes farm.

Owner: U.S. Geological Survey.
AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1% in (0.03 m), depth 50 ft (15.2 m), screened 48 to 50 ft (14.6 to 15.2 m).

DATUM.--Altitude of land-surface datum is 1,280 ft (390 m). Measuring point: Top of casing, 2.00 ft (0.61 m)

above land-surface datum.

PERIOD OF RECORD .-- November 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 24.04 ft (7.33 m) below land-surface datum, May 2, 1980; lowest, 26.52 ft (8.08 m) below land-surface datum, Jan. 2, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
MAR 21	26.18	APR 26	25.13	MAY 29	25.22	JUL 3	25.63	AUG 7	26.13	SEP 11	26.48

OTTER TAIL COUNTY -- Continued

463418095334201. Local number, 136N39W23DCC01. LOCATION.--Lat 46°34'18", long 95°33'42", in SW&SW&SE& sec.23, T.136 N., R.39 W., Hydrologic Unit 09020103, at

Perham dump.
Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1; in (0.03 m), depth 26 ft (7.9 m), screened 24 to 26 ft (7.3 to 7.9 m).

DATUM.--Altitude of land-surface datum is 1,350 ft (411 m). Measuring point: Top of casing, 1.00 ft (0.30 m)

above land-surface datum. PERIOD OF RECORD.--November 1967 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 9.90 ft (3.02 m) below land-surface datum, Aug. 10, 1972; lowest, 16.67 ft (5.08 m) below land-surface datum, Feb. 9, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 DEC 9	15.79 15.43	JAN 20	16.22	MAR 18	16.03	MAY 6	14.82	JUL 6	14.56	AUG 26	15.07

463650096042801. Local number, 136N43W10AAA01. LOCATION.--Lat 46°36'50", long 96°04'28", in NEANEANEA sec.10, T.136 N., R.43 W., Hydrologic Unit 09020103, on Oliver Haugrud farm. Owner: U.S. Geological Survey.
AQUIFER.--Surficial sand and gravel of Pleistocene Age. WELL CHARACTERISTICS. -- Bored observation water-table well, diameter 1% in (0.03 m), depth 22 ft (6.7 m), screened 20 to 22 ft (6.1 to 6.7 m).

DATUM.--Altitude of land-surface datum is 1,322 ft (403 m). Measuring point: Top of casing, 2.00 ft (0.61 m) above land-surface datum.

PERIOD OF RECORD. -- July 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 6.89 ft (2.10 m) below land-surface datum, Apr. 16, 1980; lowest, 8.67 ft (2.64 m) below land-surface datum, Dec. 1, 1980, Sept. 11, 1982.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
MAR 21	8.26	APR 26	7.86	MAY 29	8.00	JUL 3	8.16	AUG 7	8.41	SEP 11	8.67

OTTER TAIL COUNTY -- Continued

463430096050201. Local number, 136N43W22CDA02. LOCATION.--Lat 46°34'30", long 96°05'02", in NE&SE&SW& sec.22, T.136 N., R.43 W., Hydrologic Unit 09020103, at Pelican Rapids.

Owner: City of Pelican Rapids, well 2. AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 10 in (0.25 m), depth 113 ft (34.4 m), screened 87 to 113 ft (26.5 to 34.4 m).

DATUM.--Land-surface datum is 1,354 ft (412.8 m) National Geodetic Vertical Datum of 1929. Measuring point:
Bottom lip of access pipe, 2.30 ft (0.70 m) above land-surface datum.
PERIOD OF RECORD.--March 1965 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 46.97 ft (14.32 m) below land-surface datum, June 20, 1979;

lowest, 55.33 ft (16.86 m) below land-surface datum, Oct. 13, 1970.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL								
DEC 17	49.51	FEB 24	49.57	MAY 28	50.40	AUG 17	48.59	AUG 25	48.60

463956095352601. Local number, 137N39W22ACD01. LOCATION.--Lat 46°39'56", long 95°35'26", in SE&SW&NE& sec.22, T.137 N., R.39 W., Hydrologic Unit 09020103, 4.5 mi (7.2 km) north of Perham.

Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 2 in (0.10 m), depth 24 ft (7.3 m), screened 21

to 24 ft (6.4 to 7.3 m).

DATUM.--Altitude of land-surface datum is 1,370 ft (418 m). Measuring point: Top of casing, 0.50 ft (0.15 m) above land-surface datum.

PERIOD OF RECORD .-- December 1967 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 7.29 ft (2.22 m) below land-surface datum, July 15, 1975; lowest, 11.41 ft (3.48 m) below land-surface datum, Mar. 10, 15, 1977.

WATER LEVEL, IN FEET ABOVE LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	10.39	10.20	10.23	10.24	10.46	10.53	9.55	9.09	• • • • •	8.90	9.11	9.50
10	10.36	10.20	10.17	10.26	10.48	10.54				8.91	9.13	9.52
15	10.34	10.21	10.18	10.28	10.49	10.54				8.95	9.15	9.50
20	10.31	10.21	10.20	10.43	10.50	10.55				8.99		9.49
25	10.31	10.21	10.22	10.44	10.51	10.55				9.02	9.47	9.53
EOM	10.20	10.21	10.23	10.45	10.52	10.55	• • • • •		8.90	9.06	9.48	9.54

WTR YEAR 1982 HIGHEST 8.90 JUN 30-JUL 5, 1982 LOWEST 10.55 MAR 20-31, 1982

PENNINGTON COUNTY

480707096103501. Local number, 154N43W33ADA01. LOCATION.--Lat 48007'07", long 96010'35", in NE&SE&NE& sec.33, T.154 N., R.43 W., Hydrologic Unit 09020303, in Thief River Falls.

Owner: Land O'Lakes Hatchery. AQUIFER .-- Buried sand of Pleistocene Age.

WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 3 in (0.08 m), depth 124 ft (37.8 m). DATUM. -- Altitude of land-surface datum is 1,127 ft (344 m). Measuring point: Top of casing, 6.40 ft (1.95 m) below land-surface datum.

PERIOD OF RECORD. -- February 1965 to September 1969, August 1979 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 34.40 ft (10.49 m) below land-surface datum, Feb. 21, 1967; lowest, 39.16 ft (11.94 m) below land-surface datum, Oct. 7, 1980.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 4	37.79 37.84	JAN 28	37.38	MAR 23	36.49	MAY 27	36.74	JUL 20	36.93	SEP 1	37.05

PENNINGTON COUNTY--Continued

ST. LOUIS COUNTY

472638092533601. Local number, 057N20W05DAD01. LOCATION.--Lat 47°26'38", long 92°53'36", in SEANEASEA sec.5, T.57 N., R.20 W., Hydrologic Unit 04010201, 2.5 mi (4.0 km) east of Hibbing. Owner: Burlington Northern, Inc.
AQUIFER. -- Biwabik Iron Formation of Middle Precambrian Age.

WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 12 in (0.30 m), depth 430 ft (131 m), cased to 315 ft (96.0 m).

DATUM. -- Altitude of land-surface datum is 1,470 ft (448 m). Measuring point: Top of platform, 1.20 ft (0.37 m) above land-surface datum.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 55.29 ft (16.85 m) below land-surface datum, Sept. 22, 1972; lowest, 69.07 ft (21.05 m) below land-surface datum, Jan. 15, 1965.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 13 NOV 30	58.08 57.37	JAN 7	57.40	MAR 1	57.60	APR 20	58.18	JUN 24	57.97	AUG 2	57.29

472230092561001. Local number, 057N20W31DBC01. LOCATION.--Lat 47°22'30", long 92°56'10", in SW\{\}NW\{\}SE\{\} sec.31, T.57 N., R.20 W., Hydrologic Unit 04010201, 1.4 mi (2.25 km) south of Hibbing.

Owner: Mesaba County Club.

Owner: mesana county Club.

AQUITER:.-Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled unused artesian and water-table well, diameter 18 in (0.46 m), depth 92 ft (28.0 m), screened 82 to 92 ft (25.0 to 28.0 m).

DATUM.--Altitude of land-surface datum is 1,391 ft (424 m). Measuring point: Hole east side of pump base, 3.00 ft

(0.91 m) above land-surface datum.

REMARKS. -- Water level affected by pumping.

PERIOD OF RECORD. -- February 1958 to March 1965, July 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 5.85 ft (1.78 m) below land-surface datum, May 23, 1962; lowest, 15.05 ft (3.56 m) below land-surface datum, June 30, 1980.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 16	7.02	DEC 2	7.49	APR 20	7.65

ST. LOUIS COUNTY -- Continued

473102092345001. Local number, 058N18W12CCC01. LOCATION.--Lat 47°31'02", long 92°34'50", in SW&SW&SW&SW&SW&SW. R.18 W., Hydrologic Unit 04010201, 1 mi (1.6 km) west of Virginia.

Owner: U.S. Steel Corp.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in (0.15 m), depth 97 ft (29.6 m), slotted casing between 67 to 97 ft (20.4 to 29.6 m).

DATUM.--Land-surface datum is 1,427.5 ft (435.1 m) National Geodetic Vertical Datum of 1929. Measuring point:

Edge of vent pipe, 1.90 ft (0.58 m) above land-surface datum.

PERIOD OF RECORD. -- December 1954 to July 1964, July 1979 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 10.64 ft (3.24 m) below land-surface datum, July 20, 1957; lowest, 17.47 ft (5.32 m) below land-surface datum, Apr. 2, 1964.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 13	12.55	JAN 6	13.42	MAR 3	14.31	APR 19	12.22	JUN 18	12.16	AUG 3	11.93

473011092524301. Local number, 058N20W16DBC01. LOCATION.--Lat 47°30'11", long 92°52'43", in SWtNWtSEt sec.16, T.58 N., R.20 W., Hydrologic Unit 04010201, in Chisholm.

City of Chisholm.

AQUIFER. -- Buried sand and gravel of Pleistocene Age. WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 12 in (0.30 m), depth 40 ft (12.2 m), screened 30 to

40 ft (9.1 to 12.2 m).

DATUM.--Altitude of land-surface datum is 1,500 ft (457 m). Measuring point: Top of wood platform, 1.70 ft (0.52 m) above land-surface datum.

REMARKS.--Water level affected by pumping. Water-level subject to freezing during winter months. PERIOD OF RECORD.--August 1953 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 0.23 ft (0.07 m) below land-surface datum, May 10, 1954; lowest, 15.60 ft (4.75 m) below land-surface datum, Mar. 23-24, 1957.

	WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 13	2,60	NOV 30	2.76	JUN 24	2.33	AUG 2	1.21

ST. LOUIS COUNTY--Continued

474253091574101. Local number, 060N13W01BBA01. LOCATION.--Lat 47°42'53", long 91°57'41", in NE\hat{NW\hat{h}}N\hat{h} sec.1, T.60 N., R.13 W., Hydrologic Unit 09030001, at Babbitt water tower.

U.S. Geological Survey.

Owher: U.S. Geological Survey.

AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 2 in (0.05 m), depth 30 ft (9.1 m), screened 27 to 30 ft (8.2 to 9.1 m).

DATUM.--Altitude of land-surface datum is 1,485 ft (453 m). Measuring point: Top of 3 in (0.08 m) pipe, 4.00 ft

(1.22 m) above land-surface datum.

PERIOD OF RECORD. --October 1975 to June 1978, July 1979 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level, 20.70 ft (6.31 m) below land-surface datum, Oct. 6, 1975; lowest, 26.03 ft (7.93 m) below land-surface datum, June 14, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WA'I'ER LEVEL	DATE	WATER LEVEL								
OCT 1 APR 1	21.20	MAY 1	22.97	JUN 1	22.58	JUL 2	22.17	AUG 1	22.00	SEP 1	21.66

WELL CHARACTERISTICS.—Bored observation water-table well, diameter 14 in (0.03 m), depth 9 ft (2.7 m), screened 7 to 9 ft (2.1 to 2.7 m).

DATUM.—Altitude of land-surface datum is 1,342 ft (409 m). Measuring point: Top of casing, 4.00 ft (1.22 m)

above land-surface datum.

PERIOD OF RECORD. -- October 1970 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 1.68 ft (0.51 m) below land-surface datum, Apr. 20, 1982; lowest, 6.87 ft (2.09 m) below land-surface datum, Sept. 27, 1976.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL
OCT 14 DEC 1	4.18 4.12	JAN 5	4.91	MAR 3	5.29	APR 20	1.68	JUN 22 3.71	AUG 3	4.12

TRAVERSE COUNTY

455700096314001. Local number, 129N47W25CDC01. LOCATION.--Lat 45°57'00", long 93°31'40", in SW&SE&SW& sec.25, T.129 N., R.47 W., Hydrologic Unit 09020101, 9 mi

(14.5 km) north of Wheaton.

U.S. Geological Survey. Owner:

AQUIFER .-- Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS. -- Bored observation water-table well, diameter 14 in (0.03 m), depth 39 ft (11.9 m), open end. DATUM. -- Altitude of land-surface datum is 1,010 ft (308 m). Measuring point: Top of casing, 2.00 ft (0.61 m)

above land-surface datum.

PERIOD OF RECORD. -- October 1965 to current year.

EXTREMES FOR PERIOD OF RECORD .-- Highest water level, 7.05 ft (2.15 m) below land-surface datum, July 14, 1978; lowest, 12.36 ft (3.77 m) below land-surface datum, Oct. 18, 1974

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27 NOV 24	11.98 12.03	JAN 18	12.22	APR 8	11.07	JUN 24	11.42	AUG 17	11.97	SEP 21	12.07

WILKIN COUNTY

460422096193701. Local number, 130N45W15BCC01. LOCATION.--Lat 46°04'22", long 96°19'37", in SWASWANWA sec.15, T.130 N., R.45 W., Hydrologic Unit 09020101, 2 mi (3.5 km) north of Nashua.

Owner: Earl Davison

AQUIFER. -- Buried sand of Pleistocene Age.

WELL CHARACTERISTICS .-- Drilled irrigation artesian well, diameter 16 in (0.41 m), depth 226 ft (68.9 m), screened 181 to 226 ft (55.2 to 68.9 m).

DATUM.--Altitude of land-surface datum is 994 ft (303 m). Measuring point: Top of casing, 1.00 ft (0.30 m) above

land-surface datum.

PERIOD OF RECORD. -- October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 5.67 ft (1.73 m) below land-surface datum, Apr. 15, 1981; lowest, 6.09 ft (1.86 m) below land-surface datum, Oct. 24, 1980.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22 NOV 17	5.83 5.98	MAY 28 JUN 4	5.86 5.79	JUN 29	5.73	JUL 2	5.69	AUG 25	5.70	SEP 30	5.68

463422096341701. Local number, 136N47W23CCC01.
LOCATION.--Lat 46°34'22", long 96°34'17", in SW\(\frac{1}{2}\)SW\(\frac{1}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\frac{1}{2}\)SW\(\

AQUIFER .-- Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS .-- Bored observation water-table well, diameter 1th in (0.03 m), depth 62 ft (18.9 m), screened 58 to 62 ft (17.7 to 18.9 m).

DATUM.--Land-surface datum is 953.9 ft (290.8 m) National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.00 ft (0.61 m) above land-surface datum.

PERIOD OF RECORD.--October 1965 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.61 ft (0.80 m) below land-surface datum, Mar. 21, 1966;

lowest, 9.42 ft (2.87 m) below land-surface datum, Feb. 16, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27	7.43	DEC 4	7.74	FEB 23	8.44	APR 16	6.21	MAY 27	5.85	AUG 17	6.77

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

STATION NUMBER	LOCAL IDENT- I- FIER	GEO- LOGIC UNIT	DATE OF SAMPLE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (UMHOS) (90095)	PH (UNITS) (00400)	PH LAB (UNITS) (00403)	TEMPER-ATURE (DEG C) (00010)
			OTTER TAIL						
462100095414501 133N40 462715095323001 134N39	0W01ACD02	1120TSH 1120TSH 1120TSH 1120TSH	81-12-03 82-06-07 81-12-03 82-06-07	1230 1330 1130 1300	360 375 500 480	392 402 479 498	6.8 8.0 6.6 7.6	7.9 7.9 7.5 7.6	12.0 12.0 9.0 9.5 8.5
463245095331501 136N39		1120TSH	82-06-07	1230	550	584	7.7	7.8	
463500095331501 136N3	3W1 4DDDQ1	1120TSH 1120TSH	81-12-03 82-06-07	1030 1200	465 5 00	51 7 531	8.0 8.0	7•9 7•9	9.0 9.0
			ST LOUIS						
472217093033502 056N2	WO6BBA02 KTB-26	111HLCN	82-08-24	1320	715	722	8.0	7.8	8.0

DATE OF SAMPLE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	IRON, DIS- SOLVED (UG/L AS FE) (01046)		
	OTTE	ER TAIL				
81-12-03 82-06-07 81-12-03 82-06-07 82-06-07	55 58 74 80 83	2.1 2.8 9.1 9.9 3.3	3.7 4.2 .05 <.10 5.2	40 10 7100 7600 20		
81-12-03 82-06-07	68 71	12 12	11 13	40 60		
ST LOUIS						
82-08-24	27	16	5.5	12		

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1981 TO SEPTEMBER 1982

STATION	NUMBER		LOCAL IDENT- I- FIER		GEO- LOGIC UNIT	DATE OF SAMPLE	TIME	HARD- NESS (MG/L AS CACO3) (00900)	HARD- NESS NONCAR- BONATE (MG/L AS CACO3) (95902)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)
						ST LOUIS						
47221709	3033502 0	956N21W06E	BBA02 KTB-	-26	111HLCN	82-08-24	1320	280	19	51	38	1.2
DATE OF SAMPLE	ALKA- LINITY LAB (Mg/L AS CACO3) (90410)	SULFATE DIS- SOLVED (Mg/L AS SO4) (00945)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- O SOLVED (MG/L) (70301)	SOLIDS, VOLA- TILE, DIS- SOLVED (MG/L) (00520)	NITRO- GEN, NO 2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P) (70507)	BARIUM, DIS- SOLVED (Uq/L AS BA) (01005)
82-08-24	259	88	1.4	20	438	422	99					48
DATE OF SAMPLE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) ST LOUIS	MANG A- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)
82-08-24	<1	<1	<3	<10	<10	10	300	140	110	<6.0	. <4	•2

DATE OF SAMPLE PHENOLS

(UG/L) (32730)

ST LOUIS

82-08-24 2

INDEX

	Do are		D
Accuracy of field data and computed results	Page 16	Cruiser Lake near International Falls	Page 163-164
Acre-foot, definition of	2	Cubic feet per second, definition of	8
Ada, Wild Rice River near	137	Cubic feet per second per square mile,	
Adenosine Triphosphate, definition of	2 2	definition of	8
Algal growth potential, definition of	3	Data, accuracy of	16
Analyses of samples collected at water-	,	ground-water level records, explanation of	17
	138-174	other available	16
Angule Middle River at	86,178	surface-water records, collection and	- h
Argyle, Middle River at	30,173	computation of	14
Artificial substrate, definition of	ıĭ	examination of	16
Ash mass, definition of	3	Deer Creek near Holyoke	50,176
Ash River at Ash River Falls near Ray	142 143	Definition of terms	5
above mouth of Cannon Creek near Ray at entrance to Sullivan Bay near Ray	145-146	Diatoms, definition of	10 63,177
below mouth of Cannon Creek near Ray	144	Discharge at, partial-record stations, and	• 5 , - , ,
Aurora, Partridge River near	40,175	miscellaneous sites	132-137
St. Louis River near	41,175	High-flow partial-record stations	132-136
Bacteria, definition of	3	Miscellaneous sites Discharge, definition of	137 8
Bagley, Mosquito Creek near	134	Discontinued gaging stations	23-26
Baptism River near Beaver Bay28		Dissolved, definition of	8
Barnesville, Whiskey Creek at	134 107,179	Diversity index, definition of	8 134
	125,180	Downer, Spring Creek above	134
Beaver Bay, Baptism River near28		definition of	12
Bed material, definition of	3	Drainage area, definition of	8
Bigfork, Big Fork River near	136 136	Drainage basin, definition of	87-88
Big Fork River at Big Falls	136	Drayton, ND, Red River of the North at Dry mass, definition of	3
near Bigfork	136	Duluth, Miller Creek at	132
Biochemical oxygen demand, definition of	3 3	Talmadge River at	132
Biomass, definition of	135	Eighteenmile Creek near Wheaton	133
Blackhoof, Rock Creek near	133	Ely, Filson Creek near	105,179
Rock Creek tributary near	133	Kawishiwi River near	
Blue-green algae, definition of	10 53,176	Emerson, Manitoba, Red River of the North at	89-91
Bois de Sioux River near White Rock, SD Boriin Creek near Chisholm	136	Encampment River tributary at Silver Creek Explanation of ground-water level records	132 17
Borup, South Branch Wild Rice River near	134	of stage and water-discharge records	14
Bottom material, definition of	3	of water-quality records	16
Bowerman Brook near Craigville	136 134	Destant for conventing Inch Bound Units	
near Dilworth	63,177	Factors for converting Inch-Pound Units to International System (SI)	
near Hawley	61,176	UnitsInside ba	ck cover
South Branch, at Sabin	62,176 133	Fairbanks, North Branch Whiteface River near	133
Bulldog Run near Warroad	136	Fargo, ND, Red River of the North at Red River of the North below	58-59
· ·	_		60
		Fecal coliform bacteria, definition of	60 3
Callaway, Buffalo River near	134	Fecal coliform bacteria, definition of	3 3
Caribou, Roseau River below State ditch 51,		Fecal coliform bacteria, definition of	3 3 51
		Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near	3 3 51 52,176
Caribou, Roseau River below State ditch 51, near96-Carlbou River near Little Marais	-102,179 132 3	Fecal coliform bacteria, definition of	3 3 51
Caribou, Roseau River below State ditch 51, near96- Caribou River near Little Marais Cells/volume, definition of Cfs-day, definition of	-102,179 132 3 3	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood	3 3 51 52,176 105,179 133 133
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood. Forbes, St. Louis River at	3 3 51 52,176 105,179 133 133 42,176
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3 3 136	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood	3 3 51 52,176 105,179 133 133
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3 3 136 112,180	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of	3 3 51 52,176 105,179 133 133 42,176 111
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3 3 136 112,180 8 135	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of	3 3 51 52,176 105,179 133 133 42,176 111
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3 136 112,180 8 135 75,178	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of	3 3 51 52,176 105,179 133 133 42,176 111 8 8 8 27-126
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3 3 136 112,180 8 135	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of records Gaging stations, discontinued	3 3 51 52,176 105,179 133 133 42,176 111
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3 136 112,180 8 135 75,178 77,178	Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray.	3 3 52,176 105,179 133 133 42,176 111 8 8 27-126 23-26
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3 136 112,180 8 135 75,178 77,178 135 70,177	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood. Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near	3 3 52,176 105,179 133 133 42,176 111 8 8 27-126 23-26
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3 136 112,180 8 135 75,178 77,178 135	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely. Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of records Gaging stations, discontinued Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near Goodridge, Red Lake River at High Landing	3 3 51 52,176 105,179 133 42,176 111 8 8 27-126 23-26
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3 136 112,180 8 135 75,178 77,178 135 70,177	Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of Gaging stations, discontinued Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near Graceville, West Branch Mustinka River	3 3 52,176 105,179 133 42,176 111 8 8 27-126 23-26 137 135
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3 136 112,180 8 135 75,178 77,178 135 70,177 14	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near Goodridge, Red Lake River at High Landing near Graceville, West Branch Mustinka River tributary near	3 3 51 52,176 105,179 133 42,176 111 8 8 27-126 23-26 137 135 73,178
Caribou, Roseau River below State ditch 51, near	-102,179 132 3 3 3 136 112,180 8 135 75,178 77,178 77,178 70,177	Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at	3 3 52,176 105,179 133 133 42,176 111 8 8 27-126 23-26 137 135 73,178
Caribou, Roseau River below State ditch 51, near	-102,179	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near Goodridge, Red Lake River at High Landing near Graceville, West Branch Mustinka River tributary near	3 3 51 52,176 105,179 133 42,176 111 8 8 27-126 23-26 137 135 73,178 133 83-85 132
Caribou, Roseau River below State ditch 51, near	-102,179	Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Marais, Little Devil Track River near. Grand Portage, Pigeon River at Middle Falls near.	3 3 51 52,176 105,179 133 42,176 111 8 8 27-126 23-26 137 135 73,178 133 83-85 132 27,175
Caribou, Roseau River below State ditch 51, near	-102,179	Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Marais, Little Devil Track River near. Grand Portage, Pigeon River at Middle Falls near. Grygla, Mud River near.	3 3 52,176 105,179 133 42,176 111 8 8 27-126 23-26 137 135 73,178 133 83-85 132 27,175 135
Caribou, Roseau River below State ditch 51, near	-102,179	Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Grand Forks, ND, Red River of the North at. Grand Forks, ND, Red River of the North at. Grand Portage, Pigeon River at Middle Falls near. Grygla, Mud River near. Green algae, definition of.	3 3 51 52,176 105,179 133 42,176 111 8 8 27-126 23-26 137 135 73,178 133 83-85 132 27,175
Caribou, Roseau River below State ditch 51, near	-102,179	Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Marais, Little Devil Track River near. Grand Portage, Pigeon River at Middle Falls near. Grygla, Mud River near. Green algae, definition of. Ground-water, level data, by county. in hydrologic conditions.	3 3 52,176 105,179 133 133 42,176 111 8 8 27-126 23-26 137 135 73,178 133 83-85 132 27,175 135 10 184-205 2
Caribou, Roseau River below State ditch 51, near	-102,179	Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Portage, Pigeon River at Middle Falls near. Grygla, Mud River near. Green algae, definition of. Ground-water, level data, by county.	3 3 51 52,176 105,179 133 42,176 111 8 8 27-126 23-26 137 135 73,178 133 83-85 132 27,175 135 10 184-205
Caribou, Roseau River below State ditch 51, near	-102,179	Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gagling stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Forks, ND, Red River at Middle Falls near. Grand Forkage, Pigeon River at Middle Falls near. Grygla, Mud River near. Green algae, definition of. Ground-water, level data, by county. in hydrologic conditions. quality data, by county.	3 3 52,176 105,179 133 133 42,176 111 8 8 27-126 23-26 137 135 73,178 133 83-85 132 27,175 135 10 184-205 2
Caribou, Roseau River below State ditch 51, near	-10 2,179	Fecal coliform bacteria, definition of. Fecal streptococci bacteria, definition of. Fergus Falls, Orwell Lake near. Otter Tail River below Orwell Dam, near. Filson Creek near Ely. Floodwood, Floodwood River above. Floodwood River above Floodwood. Forbes, St. Louis River at. Fort Frances, Ontario, Rainy Lake near. Gage height, definition of. Gaging-station, definition of. records. Gaging stations, discontinued. Gold Portage outlet from Kabetogama Lake near Ray. Gonvick, Ruffy Brook near. Goodridge, Red Lake River at High Landing near. Graceville, West Branch Mustinka River tributary near. Grand Forks, ND, Red River of the North at. Grand Marais, Little Devil Track River near. Grand Portage, Pigeon River at Middle Falls near. Grygla, Mud River near. Green algae, definition of. Ground-water, level data, by county. in hydrologic conditions. quality data, by county. Halstad, Red River of the North at. Hardness of water, definition of.	3 3 52,176 105,179 133 42,176 1111 8 8 27-126 23-26 137 135 73,178 133 83-85 132 27,175 135 10 184-205 206-207 66-68
Caribou, Roseau River below State ditch 51, near	-10 2,179	Fecal coliform bacteria, definition of Fecal streptococci bacteria, definition of Fergus Falls, Orwell Lake near Otter Tail River below Orwell Dam, near Filson Creek near Ely. Floodwood, Floodwood River above Floodwood River above Floodwood Forbes, St. Louis River at Fort Frances, Ontario, Rainy Lake near Gage height, definition of Gaging-station, definition of records Gaging stations, discontinued Gold Portage outlet from Kabetogama Lake near Ray Gonvick, Ruffy Brook near Goodridge, Red Lake River at High Landing near Graceville, West Branch Mustinka River tributary near Grand Forks, ND, Red River of the North at Grand Marais, Little Devil Track River near Grand Portage, Pigeon River at Middle Falls near Grygla, Mud River near Green algae, definition of Ground-water, level data, by county in hydrologic conditions quality data, by county Halstad, Red River of the North at.	3 3 51 52,176 105,179 133 42,176 111 8 8 27-126 23-26 137 135 73,178 133 83-85 132 27,175 135 10 184-205 206-207

	Page		Page
Hendrum, Wild Rice River at	65,177 56-57	Mahnomen, Marsh Creek tributary near	134
High-flow partial-record stations	132-136	Malung, Roseau River below South Fork, near Manitou Rapids, Rainy River at119-	92,179
Holyoke, Deer Creek near	50,176	Map of Minnesota ground-water observation	-124,100
Nemadji River near	133	wells	182-183
South Fork Nemadji River near	133	high-flow partial-record stations	130-131
Hoyt Lakes, Partridge River above Colby	E 20 1 FE	water-discharge stations	18-19
Lake at		water-quality stations	20-21
Hydrologic benchmark station, definition of Hydrologic conditions	13 2	Marsh Creek tributary near Mahnomen	134 69,177
graphs of	4-7	Marsh River near Shelly	11
ground-water levels	2	Mean discharge, definition of	8
precipitation and streamflow	2	Measurements at miscellaneous sites	137
water quality	2	Metamorphic stage, definition of	8
Hydrologic unit, definition of	8	Methylene blue active substance,	9
Introduction	1	definition of	9
Instantaneous discharge, definition of	8	Micrograms per kilogram, definition of	9
International Falls, Cruiser Lake near	163-164	Micrograms per liter, definition of	9
Locator Lake near	169-170	Middle River at Argyle	86,178
Namakan Lake above Kettle Falls near	165-166	near Newfolden	135
Oslo Lake near	167-168 171-172	Miller Creek at Duluth	132
Rainy Lake at Brule Narrows near	173-174	Milligrams of carbon per area or volume	10
Shoepack Lake near	161-162	per unit time, definition of Milligrams of oxygen per area or volume	10
		per unit time, definition of	10
Kabetogama Lake at mouth of Meadwood Bay		Milligrams per liter, definition of	9
near Ray	151-152	Miscellaneous analyses of streams in	
at Sullivan Bay outlet near Ray	149-150	Minnesota, water-quality data at	175 100
in Lost Bay near Raynear Ray	159-160 157-158	streamflow stations	175-180
Kawishiwi River near Ely		Miscellaneous sites, discharge measurements at	137
near Winton	106,179	numbering system for	13
Knife River near Two Harbors	34,175	Mosquito Creek near Bagley	134
		Mud River near Grygla	135
		Mukooda Lake near Crane Lake	138-139
Lac la Croix, Ontario, Namakan River at	108 170	V 1 Tolono Volta Politica Politica	
outlet of	108,179 135	Namakan Lake above Kettle Falls near International Falls	165-166
Lakes and Reservoirs:	137	at mouth of Namakan River, Ontario	155-156
Cruiser Lake near International Falls	163-164	near Ray	153-154
Kabetogama Lake at Sullivan Bay outlet		Namakan River at outlet of Lac la Croix,	
near Ray	149-150	Ontario	108,179
at mouth of Meadwood Bay near Ray	151-152	Namakan Lake at mouth of	155-156
in Lost Bay near Raynear Ray	159-160 157-158	Nashaua, Rabbit River near	134
Lake of the Woods at Warroad	126	National Geodetic Vertical Datum of 1929	9
Locator Lake near International Falls	169-170	(NGVD), definition of	,
Lower Red Lake near Red Lake	71	(NASQAN), definition of	13
Mukooda Lake near Crane Lake	138-139	Natural substrate, definition of	11
Namakan Lake above Kettle Falls near	165 166	Nemadji River near Holyoke	133
International Falls	165-166	Newfolden, Middle River near	135
at mouth of Namakan River, Ontario near Ray	155-156 153-154	North Branch Whiteface River near Fairbanks	133
O'Leary Lake near Crane Lake	147-148	Northome, South Branch Battle River at Numbering system for wells and	135
Orwell Lake near Fergus Falls	51	miscellaneous sites	13
Oslo Lake near International Falls	167-168	milocia di controlli	-3
Rainy Lake at Black Bay near International			
Falls	171-172	Ogema, Spring Creek tributary near	134
at Brule Narrows near International	172 17h	Oklee, Lost River at	76,178
Fallsnear Fort Frances, Ontario	173-174 111	O'Leary Lake near Crane Lake	147-148
Sandpoint Lake below Harrison Narrows	111	Organic mass, definition of	3
near Crane Lake	140-141	Organism, definition of	9
Shoepack Lake near International Falls	161-162	count/volume, definition of	ģ
Vermilion Lake near Soudan	109	Orwell Lake near Fergus Falls	51
Lake of the Woods at Warroad	126	Oslo Lake near International Falls	167-168
Lake of the Woods basin, gaging-station	102 126	Other data available	16
records inhigh-flow partial-record stations in	103-126 135-136	Otter Tail River below Qrwell Dam, near Fergus Falls	52,176
measurements at miscellaneous sites in	137	retkno ratio	92,110
Lake Superior, streams tributary to, high-	-5,		
flow partial-record stations	132-133	Parameter code numbers	9
streams tributary to, gaging-station		Partial-record station, definition of	9
records	27- 50	Particle-size classification, definition of	9
List of gaging-stations, in downstream order,	vı	Particle-size, definition of	9
for which records are published List of counties for which ground-water-level	∨ т	Partridge River above Colby Lake, at Hoyt Lakes	529 175
records are published	VII	near Aurora	40,175
Little Devil Track River near Grand Marais	132	Percent composition, definition of	9
Little Fork River at Cook	135	Periphyton, definition of	ģ
at Littlefork		Perry Creek tributary near Shooks	135
Little fork, Little Fork River at		Pesticides, definition of	19
Little Marais, Caribou River near Little Stewart River near Two Harbors	132 132	Pesticide program, definition of	13
Locator Lake near International Falls	169-170	Phytoplankton, definition of	10 9
Lost River at Oklee	76,178	Pigeon River at Middle Falls, near Grand	,
Lower Red Lake near Red Lake	71	Portage	27,175
Lutsen, Poplar River at	132	Plankton, definition of	10

211

	Page		Page
Plummer, Clearwater River at	75,178	South Branch Battle River at Northome	135
Clearwater River tributary near	135	South Branch Buffalo River at Sabin	62,176
Polychlorinated biphenyls, definition of	10	South Branch Two Rivers at Lake Bronson	135
Poplar River at Lutsen	132		
	_	South Branch Wild Rice River near Borup	134
Precipitation and streamflow	2	South Fork Nemadji River near Holyoke	133
Primary productivity, definition of	10	Special networks and programs	13
Publications on techniques of water-	2.2	Specific conductance, definition of	11
resources investigations	22	Specific conductance and temperature at	
D 11.1. D1	104	streamflow stations	175-180
Rabbit River near Nashaua	134	Spring Creek above Downer	134
Radiochemical program, definition of	13	Spring Creek near Blackduck	135
Rainy Lake at Black Bay near International		tributary near Ogema	134
Falls	171-172	Stage-discharge relation, definition of	11
at Brule Narrows near International Falls	173-174	Stage and water-discharge data, accuracy of	16
near Fort Frances, Ontario	111	collection and computation of	14
Rainy River at Manitou Rapids119-	-124,180	explanation of	14
Rapid River near Baudette	125,180	other available	16
Ray, Ash River at Ash River Falls near	142	Station numbers, explanation of	12
Ash River above mouth of Cannon Creek near	143	Streamflow, definition of	11
Ash River at entrance to Sullivan Bay		in hydrologic conditions	2
outlet near	145-146	Streams tributary to Lake Superior	
Ash River below mouth of Cannon Creek near	144	high-flow partial-record stations in	132-133
Gold Portage outlet from Kabetogama		gaging-station records in	27-50
Lake near	137	Sturgeon River near Chisholm	112,180
Kabetogama Lake at Sullivan Bay outlet		Substrate, definition of	11
near	149-150	Surface area, definition of	11
Kabetogama Lake at mouth of Meadwood Bay		Surface-water data, accuracy of	16
Bay near	151-152	collection and computation of data	14
Kabetogama Lake in Lost Bay near	159-160		16
Kabetogama Lake near	157-158	other available	11
Namakan Lake near	153-154	Suspended, definition of	11
Records of discharge collected by agencies	475" LJ"		11
other than the Geological Survey	16	Suspended recoverable, definition of	11
	10	Suspended total, definition of	10
Recoverable from bottom material, definition of	10	Suspended sediment, definition of	10
	71	Suspended-sediment concentration	10
Red Lake, Lower Red Lake near		definition of	10
Red Lake River nearRed Lake Falls, Clearwater River at	72,177 77,178	Suspended-sediment discharge, definition of	11
Red Lake River at Crookston7		Suspended-sediment load, definition of	11
at High Landing, near Goodridge	73,178	Malmadma Dimon at Duluth	132
near Red Lake	72,177	Talmadge River at Duluth	12
Red River of the North at Drayton, ND	87-88	Taxonomy, definition of	2
at Emerson, Manitoba	89-91	Thief River near Thief River Falls	74,178
at Fargo, ND	58-59	Thief River Falls, Thief River near	74,178
at Grand Forks, ND	83-85	Time-weighted average, definition of	12
at Halstad	66-68	Tons per acre-foot, definition of	12
at Hickson, ND	56-57	Tons per day, definition of	12
at Wahpeton, ND	54-55	Total, definition of	12
below Fargo, ND	60	Total in bottom material, definition of	12
Red River of the North basin, high-flow		Total coliform bacteria, definition of	
partial-record stations in	133-135	Total load, definition of	3 12
gaging-station records in	51-102	Total organism count, definition of	9
miscellaneous measurements in	137	Total recoverable, definition of	12
Reservoir (see lakes and reservoirs)	-5,	Total sediment discharge, definition of	11
Rock Creek near Blackhoof	133	Tower, Vermilion River (tributary to Namakan	
tributary near Blackhoof	133	River), below Vermilion Lake near	137
Roseau Lake, Roseau River at	94	Tritium network, definition of	14
Roseau River at Roseau Lake	94	Twin Valley, Coon Creek near	134
at Ross	95,179	Wild Rice River at	64,177
below Roseau	93,137	Wild Rice River tributary near	134
below State ditch 51, near Caribou96	-102,179	Two Harbors, Knife River near	34,175
below South Fork, near Malung	92,179		
near Roseau	137	Little Stewart River near	132 132
Roseau, Roseau River below	93,137	Silver Creek tributary near	122
Roseau River near	137		
Ross, Roseau River at	95,179	Manual Idan Talan maan Gandan	100
Ruffy Brook near Gonvick	135	Vermilion Lake near Soudan	109
	10	Vermilion River below Vermilion Lake,	127
Runoff in inches, definition of	10	near Tower	137 110,180
Sabin, South Branch Buffalo River at	62,176	near Crane Lake	110,100
St. Louis River at Forbes	42,176	Voyageurs National Park, water-quality partial-record stations	138-174
at Scanlon4		Ash River at Ash River Falls near Ray	142
near Aurora	41,175	above mouth of Cannon Creek near Ray	143
Sand Hill River at Climax	70,177		145-146
Sandpoint Lake below Harrison Narrows near	10,111	at entrance to Sullivan Bay near Ray	149-140
Crane Lake	140-141	below mouth of Cannon Creek near Ray	163-164
Scanlon, St. Louis River at 4		Cruiser Lake near International Falls Kabetogama Lake at Sullivan Bay outlet	103-104
Sediment, definition of	10	near Ray	149-150
explanation of	17	at mouth of Meadwood Bay near Ray	151-152
Shaw, Bug Creek at	133	in Lost Bay near Ray	159-160
Shelly, Marsh River near	69,177	near Ray	157-158
Shoepack Lake near International Falls	161-162	Locator Lake near International Falls	169-170
Shooks, Perry Creek tributary near	135	Mukooda Lake near Crane Lake	138-139
Silver Creek, Encampment River tributary at	132	Namakan Lake above Kettle Falls near	150-159
Silver Creek near Clearbrook	135	International Falls	165-166
tributary near Two Harbors	132	at mouth of Namakan River, Ontario	155-156
Snake River at Warren	137	near Ray	153-154
Solute, definition of	11	O'Leary Lake near Crane Lake	147-148
Soudan, Vermilion Lake near	109	Oslo Lake near International Falls	167-168
	10)	OBTO HOVE HEST THRETHOSTONGT LOTTER ********	701-100

INDEX

	Page		Page
Voyageurs National ParkContinued	9	Water-quality records,	
Rainy Lake at Black Bay near International		water analysis	16
Falls	171-172	water temperature	17
Rainy Lake at Brule Narrows near	-,,-	Weighted average, definition of	12
International Falls	173-174	Well number, definition of	13
Sandpoint Lake below Harrison Narrows	-13 -1	West Branch Mustinka River tributary near	
near Crane Lake	140-141	Graceville	133
Shoepack Lake near International Falls	161-162	Wet mass, definition of	3
oncopacit zano near antinatana near antinatana		Wheaton, Eighteen Mile Creek near	133
Wahpeton, ND, Red River of the North at	54-55	Whiskey Creek at Barnesville	134
Warren, Snake River at	137	Whiteface River, North Branch, near	-3.
Warroad, Bulldog Run near	136	Fairbanks	133
East Branch Warroad River near	136	White Rock, SD, Bois de Sioux River near	53,176
Lake of the Woods at	126	Wild Rice River at Hendrum	65,177
Warroad River. East Branch near Warroad	136	at Twin Valley	64,177
Water-quality records, analyses of samples	130	near Ada	137
collected at ground-water wells	206-207	tributary near Twin Valley	134
at partial-record stations	138-174	Winton, Basswood River near	107.179
collection and examination of	16	Kawishiwi River near	106.179
explanation of	16	WDR, definition of	12
in hydrologic conditions	2	WRD, definition of	12
miscellaneous analysis at streamflow	۷	WSP, definition of	12
stations	175-180	noi, doi into ion of the transfer and in the t	12
	175-100	Zooplankton, definition of	10
sediment	1 (noobrankoon, derrureren or	10

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm²)
	4.047x10 ⁻³	square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm ³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785×10^{3}	cubic meters (m ³)
	3.785x10 ⁻³	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x10 ¹	cubic decimeters (dm ³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^3	cubic meters (m ³)
	2.447×10^{-3}	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^{3}	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
	2.832x10 ¹	cubic decimeters per second (dm³/s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm³/s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm³/s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 702 Post Office Building St. Paul, MN 55101

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE